
An Introduction to Fuzzing
and a Direct Application to the Real World

Leonardo Galli

flagbot (ctf@vis.ethz.ch)

October 15, 2021

What does this ... have to do with this?

Leonardo Galli October 15, 2021 2 / 64

Table of Contents
Introduction
Fuzzing

Types of Fuzzing
Getting Started with Fuzzing
Binary-only Fuzzing

Fuzzing the iPhone Boot Loader
Background
Threat Model
Building a Fuzzable Binary

IMG4 Fuzzing
Fuzzing Speed

USB Fuzzing
Fuzzing-Enabling Thread-safe Allocator (FETA)
Results

Conclusion
Bibliography

About Me

▶ Finished my Bachelor of Computer Science at ETH
▶ Member of flagbot since over three years
▶ President of flagbot since over two years
▶ Lead organizer since half a year

Leonardo Galli
leonardo.galli@vis.ethz.ch

Leonardo Galli October 15, 2021 4 / 64

mailto:leonardo.galli@vis.ethz.ch

About flagbot

▶ VIS committee and ETH’s Capture the Flag team
▶ CTFs are team-based cybersecurity competitions,

often involving real-world attacks
▶ Ranked 1st place in Switzerland in 2019 and 20201

▶ Playing CTFs on weekends
▶ Weekly meetings on Monday at 19:00 over Zoom

and in person at CAB H52, open to anyone
▶ Discussion of challenges and lectures aimed at

beginners (recordings available on
flagbot.ch/material)

Contact: ctf@vis.ethz.ch
More Information: flagbot.ch

1According to ctftime.org
Leonardo Galli October 15, 2021 5 / 64

https://flagbot.ch/material
mailto:ctf@vis.ethz.ch
https://flagbot.ch
https://ctftime.org/team/34878

About organizers

▶ Joint team between flagbot, polygl0ts (EPFL),
cr0wn (UK) and secret.club

▶ Team up together for larger events
▶ Currently ranked 7th worldwide2

▶ Multiple big wins, such as best European team at
DEF CON and #1 at Tencent CTF 2021 Contact: org@anize.rs

Website: org.anize.rs

2According to ctftime.org
Leonardo Galli October 15, 2021 6 / 64

mailto:org@anize.rs
https://org.anize.rs
https://ctftime.org/team/42934

Introduction

Leonardo Galli October 15, 2021 7 / 64

Motivation
▶ Imagine you are company REDACTED

▶ Many security flaws are discovered
▶ “ REDACTED Issues Emergency Security Updates to Close a Spyware Flaw” [7]
▶ “ REDACTED zero-day let SolarWinds hackers compromise fully updated

REDACTED ” [3]
▶ “New REDACTED ‘Zero Day’ Hack Has Existed For Months” [4]

Leonardo Galli October 15, 2021 8 / 64

Motivation
▶ Imagine you are company REDACTED
▶ Many security flaws are discovered

▶ “ REDACTED Issues Emergency Security Updates to Close a Spyware Flaw” [7]
▶ “ REDACTED zero-day let SolarWinds hackers compromise fully updated

REDACTED ” [3]
▶ “New REDACTED ‘Zero Day’ Hack Has Existed For Months” [4]

Leonardo Galli October 15, 2021 8 / 64

Motivation
▶ Imagine you are company REDACTED
▶ Many security flaws are discovered

▶ “ REDACTED Issues Emergency Security Updates to Close a Spyware Flaw” [7]
▶ “ REDACTED zero-day let SolarWinds hackers compromise fully updated

REDACTED ” [3]
▶ “New REDACTED ‘Zero Day’ Hack Has Existed For Months” [4]

▶ Problem: Want to reduce the number of security issues
▶ There are just too many

▶ Problem: Security experts are costly

Leonardo Galli October 15, 2021 8 / 64

Motivation
▶ Imagine you are company REDACTED
▶ Many security flaws are discovered

▶ “ REDACTED Issues Emergency Security Updates to Close a Spyware Flaw” [7]
▶ “ REDACTED zero-day let SolarWinds hackers compromise fully updated

REDACTED ” [3]
▶ “New REDACTED ‘Zero Day’ Hack Has Existed For Months” [4]

▶ Problem: Want to reduce the number of security issues
▶ There are just too many

▶ Problem: Security experts are costly

Leonardo Galli October 15, 2021 8 / 64

Automatic Vulnerability Discovery

▶ Solution: Use modern automation to find
vulnerabilities

▶ Introducing “fuzzing”

▶ Automatically find vulnerabilities
▶ Can be run unsupervised
▶ Great track record

▶ Becoming more and more popular and useful
▶ Native fuzzing support in go 1.18
▶ OSS-Fuzz provides continuous fuzzing for OSS

▶ “As of February 2021, 26,000+ bugs found in
over 400 open source projects integrated with
OSS-Fuzz.” [2]

Not this kind of automation

Leonardo Galli October 15, 2021 9 / 64

Automatic Vulnerability Discovery

▶ Solution: Use modern automation to find
vulnerabilities

▶ Introducing “fuzzing”
▶ Automatically find vulnerabilities
▶ Can be run unsupervised
▶ Great track record

▶ Becoming more and more popular and useful
▶ Native fuzzing support in go 1.18
▶ OSS-Fuzz provides continuous fuzzing for OSS

▶ “As of February 2021, 26,000+ bugs found in
over 400 open source projects integrated with
OSS-Fuzz.” [2]

Not this kind of automation

Leonardo Galli October 15, 2021 9 / 64

Automatic Vulnerability Discovery

▶ Solution: Use modern automation to find
vulnerabilities

▶ Introducing “fuzzing”
▶ Automatically find vulnerabilities
▶ Can be run unsupervised
▶ Great track record

▶ Becoming more and more popular and useful

▶ Native fuzzing support in go 1.18
▶ OSS-Fuzz provides continuous fuzzing for OSS

▶ “As of February 2021, 26,000+ bugs found in
over 400 open source projects integrated with
OSS-Fuzz.” [2]

Not this kind of automation

Leonardo Galli October 15, 2021 9 / 64

Automatic Vulnerability Discovery

▶ Solution: Use modern automation to find
vulnerabilities

▶ Introducing “fuzzing”
▶ Automatically find vulnerabilities
▶ Can be run unsupervised
▶ Great track record

▶ Becoming more and more popular and useful
▶ Native fuzzing support in go 1.18

▶ OSS-Fuzz provides continuous fuzzing for OSS
▶ “As of February 2021, 26,000+ bugs found in

over 400 open source projects integrated with
OSS-Fuzz.” [2]

Not this kind of automation

Leonardo Galli October 15, 2021 9 / 64

Automatic Vulnerability Discovery

▶ Solution: Use modern automation to find
vulnerabilities

▶ Introducing “fuzzing”
▶ Automatically find vulnerabilities
▶ Can be run unsupervised
▶ Great track record

▶ Becoming more and more popular and useful
▶ Native fuzzing support in go 1.18
▶ OSS-Fuzz provides continuous fuzzing for OSS

▶ “As of February 2021, 26,000+ bugs found in
over 400 open source projects integrated with
OSS-Fuzz.” [2] Not this kind of automation

Leonardo Galli October 15, 2021 9 / 64

Fuzzing

Leonardo Galli October 15, 2021 10 / 64

Basic Idea

Almost the right kind of fuzzy3.

3Depending on the context.
Leonardo Galli October 15, 2021 11 / 64

Basic Idea

▶ Basic fuzzing loop:

1. Generate (random) input
2. Run application with generated input
3. Observe application behaviour

⇒ Any observed crashes indicate presence of bugs
▶ Not necessarily any vulnerabilities yet, more on that later

Leonardo Galli October 15, 2021 11 / 64

Basic Idea

▶ Basic fuzzing loop:
1. Generate (random) input

2. Run application with generated input
3. Observe application behaviour

⇒ Any observed crashes indicate presence of bugs
▶ Not necessarily any vulnerabilities yet, more on that later

Leonardo Galli October 15, 2021 11 / 64

Basic Idea

▶ Basic fuzzing loop:
1. Generate (random) input
2. Run application with generated input

3. Observe application behaviour

⇒ Any observed crashes indicate presence of bugs
▶ Not necessarily any vulnerabilities yet, more on that later

Leonardo Galli October 15, 2021 11 / 64

Basic Idea

▶ Basic fuzzing loop:
1. Generate (random) input
2. Run application with generated input
3. Observe application behaviour

⇒ Any observed crashes indicate presence of bugs
▶ Not necessarily any vulnerabilities yet, more on that later

Leonardo Galli October 15, 2021 11 / 64

Basic Idea

▶ Basic fuzzing loop:
1. Generate (random) input
2. Run application with generated input
3. Observe application behaviour

⇒ Any observed crashes indicate presence of bugs

▶ Not necessarily any vulnerabilities yet, more on that later

Leonardo Galli October 15, 2021 11 / 64

Basic Idea

▶ Basic fuzzing loop:
1. Generate (random) input
2. Run application with generated input
3. Observe application behaviour

⇒ Any observed crashes indicate presence of bugs
▶ Not necessarily any vulnerabilities yet, more on that later

Leonardo Galli October 15, 2021 11 / 64

Fuzzing
Types of Fuzzing

Leonardo Galli October 15, 2021 12 / 64

Overview

▶ Fuzzing encompasses broad spectrum of techniques
▶ Three important ways of categorizing fuzzers
1. How input is generated

▶ Mutate existing input
▶ Generate from scratch
▶ Usually mutation based

2. Awareness of input structure
3. Awareness of application structure

Leonardo Galli October 15, 2021 13 / 64

Awareness of Input Structure

▶ Fuzzing input can be anything, not just text
▶ Inputs should have certain structures

▶ Structure distinguishes valid from invalid input
▶ Example of structure is a file format

▶ Question: Why do we care about valid input when fuzzing?
⇒ Fuzzer should tow fine line between valid and invalid input
▶ A “smart” (model-based or grammar-based) fuzzer uses pre-existing knowledge

about the input structure to generate “valid enough” inputs.
▶ A “dumb” fuzzer does no such thing
▶ Modern fuzzers usually use a combination of both

Leonardo Galli October 15, 2021 14 / 64

Awareness of Input Structure

▶ Fuzzing input can be anything, not just text
▶ Inputs should have certain structures

▶ Structure distinguishes valid from invalid input
▶ Example of structure is a file format

▶ Question: Why do we care about valid input when fuzzing?

⇒ Fuzzer should tow fine line between valid and invalid input
▶ A “smart” (model-based or grammar-based) fuzzer uses pre-existing knowledge

about the input structure to generate “valid enough” inputs.
▶ A “dumb” fuzzer does no such thing
▶ Modern fuzzers usually use a combination of both

Leonardo Galli October 15, 2021 14 / 64

Awareness of Input Structure

▶ Fuzzing input can be anything, not just text
▶ Inputs should have certain structures

▶ Structure distinguishes valid from invalid input
▶ Example of structure is a file format

▶ Question: Why do we care about valid input when fuzzing?
⇒ Fuzzer should tow fine line between valid and invalid input

▶ A “smart” (model-based or grammar-based) fuzzer uses pre-existing knowledge
about the input structure to generate “valid enough” inputs.

▶ A “dumb” fuzzer does no such thing
▶ Modern fuzzers usually use a combination of both

Leonardo Galli October 15, 2021 14 / 64

Awareness of Input Structure

▶ Fuzzing input can be anything, not just text
▶ Inputs should have certain structures

▶ Structure distinguishes valid from invalid input
▶ Example of structure is a file format

▶ Question: Why do we care about valid input when fuzzing?
⇒ Fuzzer should tow fine line between valid and invalid input
▶ A “smart” (model-based or grammar-based) fuzzer uses pre-existing knowledge

about the input structure to generate “valid enough” inputs.
▶ A “dumb” fuzzer does no such thing

▶ Modern fuzzers usually use a combination of both

Leonardo Galli October 15, 2021 14 / 64

Awareness of Input Structure

▶ Fuzzing input can be anything, not just text
▶ Inputs should have certain structures

▶ Structure distinguishes valid from invalid input
▶ Example of structure is a file format

▶ Question: Why do we care about valid input when fuzzing?
⇒ Fuzzer should tow fine line between valid and invalid input
▶ A “smart” (model-based or grammar-based) fuzzer uses pre-existing knowledge

about the input structure to generate “valid enough” inputs.
▶ A “dumb” fuzzer does no such thing
▶ Modern fuzzers usually use a combination of both

Leonardo Galli October 15, 2021 14 / 64

Awareness of Application Structure

▶ Fuzzing effective if high degree of coverage achieved

▶ A “black-box” fuzzer is unaware of internal program structure.

▶ Blindly test inputs and hope for crashes
▶ Very fast and easy to parallelize
▶ Quick setup for any program

▶ A “white-box” fuzzer is fully aware and uses program analysis to reach high
coverage and critical points.

▶ For example, symbolic execution or taint analysis
▶ Heavyweight analysis, slow and difficult to scale
▶ Cannot be applied to every application without significant effort

Leonardo Galli October 15, 2021 15 / 64

Awareness of Application Structure

▶ Fuzzing effective if high degree of coverage achieved
▶ A “black-box” fuzzer is unaware of internal program structure.

▶ Blindly test inputs and hope for crashes
▶ Very fast and easy to parallelize
▶ Quick setup for any program

▶ A “white-box” fuzzer is fully aware and uses program analysis to reach high
coverage and critical points.

▶ For example, symbolic execution or taint analysis
▶ Heavyweight analysis, slow and difficult to scale
▶ Cannot be applied to every application without significant effort

Leonardo Galli October 15, 2021 15 / 64

Awareness of Application Structure

▶ Fuzzing effective if high degree of coverage achieved
▶ A “black-box” fuzzer is unaware of internal program structure.

▶ Blindly test inputs and hope for crashes

▶ Very fast and easy to parallelize
▶ Quick setup for any program

▶ A “white-box” fuzzer is fully aware and uses program analysis to reach high
coverage and critical points.

▶ For example, symbolic execution or taint analysis
▶ Heavyweight analysis, slow and difficult to scale
▶ Cannot be applied to every application without significant effort

Leonardo Galli October 15, 2021 15 / 64

Awareness of Application Structure

▶ Fuzzing effective if high degree of coverage achieved
▶ A “black-box” fuzzer is unaware of internal program structure.

▶ Blindly test inputs and hope for crashes
▶ Very fast and easy to parallelize

▶ Quick setup for any program
▶ A “white-box” fuzzer is fully aware and uses program analysis to reach high

coverage and critical points.

▶ For example, symbolic execution or taint analysis
▶ Heavyweight analysis, slow and difficult to scale
▶ Cannot be applied to every application without significant effort

Leonardo Galli October 15, 2021 15 / 64

Awareness of Application Structure

▶ Fuzzing effective if high degree of coverage achieved
▶ A “black-box” fuzzer is unaware of internal program structure.

▶ Blindly test inputs and hope for crashes
▶ Very fast and easy to parallelize
▶ Quick setup for any program

▶ A “white-box” fuzzer is fully aware and uses program analysis to reach high
coverage and critical points.

▶ For example, symbolic execution or taint analysis
▶ Heavyweight analysis, slow and difficult to scale
▶ Cannot be applied to every application without significant effort

Leonardo Galli October 15, 2021 15 / 64

Awareness of Application Structure

▶ Fuzzing effective if high degree of coverage achieved
▶ A “black-box” fuzzer is unaware of internal program structure.

▶ Blindly test inputs and hope for crashes
▶ Very fast and easy to parallelize
▶ Quick setup for any program

▶ A “white-box” fuzzer is fully aware and uses program analysis to reach high
coverage and critical points.

▶ For example, symbolic execution or taint analysis
▶ Heavyweight analysis, slow and difficult to scale
▶ Cannot be applied to every application without significant effort

Leonardo Galli October 15, 2021 15 / 64

Awareness of Application Structure

▶ Fuzzing effective if high degree of coverage achieved
▶ A “black-box” fuzzer is unaware of internal program structure.

▶ Blindly test inputs and hope for crashes
▶ Very fast and easy to parallelize
▶ Quick setup for any program

▶ A “white-box” fuzzer is fully aware and uses program analysis to reach high
coverage and critical points.
▶ For example, symbolic execution or taint analysis

▶ Heavyweight analysis, slow and difficult to scale
▶ Cannot be applied to every application without significant effort

Leonardo Galli October 15, 2021 15 / 64

Awareness of Application Structure

▶ Fuzzing effective if high degree of coverage achieved
▶ A “black-box” fuzzer is unaware of internal program structure.

▶ Blindly test inputs and hope for crashes
▶ Very fast and easy to parallelize
▶ Quick setup for any program

▶ A “white-box” fuzzer is fully aware and uses program analysis to reach high
coverage and critical points.
▶ For example, symbolic execution or taint analysis
▶ Heavyweight analysis, slow and difficult to scale

▶ Cannot be applied to every application without significant effort

Leonardo Galli October 15, 2021 15 / 64

Awareness of Application Structure

▶ Fuzzing effective if high degree of coverage achieved
▶ A “black-box” fuzzer is unaware of internal program structure.

▶ Blindly test inputs and hope for crashes
▶ Very fast and easy to parallelize
▶ Quick setup for any program

▶ A “white-box” fuzzer is fully aware and uses program analysis to reach high
coverage and critical points.
▶ For example, symbolic execution or taint analysis
▶ Heavyweight analysis, slow and difficult to scale
▶ Cannot be applied to every application without significant effort

Leonardo Galli October 15, 2021 15 / 64

A Middle Ground

▶ A “grey-box” fuzzer uses lightweight instrumentation to learn information about
program structure.

▶ Usually tracing basic block transitions or standard code coverage
▶ Recent advancements include the use of sanitizers [6]

▶ Almost as fast and scalable as black-box fuzzing
▶ Most popular approach by far
▶ Support for most program configurations

Leonardo Galli October 15, 2021 16 / 64

A Middle Ground

▶ A “grey-box” fuzzer uses lightweight instrumentation to learn information about
program structure.
▶ Usually tracing basic block transitions or standard code coverage

▶ Recent advancements include the use of sanitizers [6]
▶ Almost as fast and scalable as black-box fuzzing
▶ Most popular approach by far
▶ Support for most program configurations

Leonardo Galli October 15, 2021 16 / 64

A Middle Ground

▶ A “grey-box” fuzzer uses lightweight instrumentation to learn information about
program structure.
▶ Usually tracing basic block transitions or standard code coverage
▶ Recent advancements include the use of sanitizers [6]

▶ Almost as fast and scalable as black-box fuzzing
▶ Most popular approach by far
▶ Support for most program configurations

Leonardo Galli October 15, 2021 16 / 64

A Middle Ground

▶ A “grey-box” fuzzer uses lightweight instrumentation to learn information about
program structure.
▶ Usually tracing basic block transitions or standard code coverage
▶ Recent advancements include the use of sanitizers [6]

▶ Almost as fast and scalable as black-box fuzzing

▶ Most popular approach by far
▶ Support for most program configurations

Leonardo Galli October 15, 2021 16 / 64

A Middle Ground

▶ A “grey-box” fuzzer uses lightweight instrumentation to learn information about
program structure.
▶ Usually tracing basic block transitions or standard code coverage
▶ Recent advancements include the use of sanitizers [6]

▶ Almost as fast and scalable as black-box fuzzing
▶ Most popular approach by far

▶ Support for most program configurations

Leonardo Galli October 15, 2021 16 / 64

A Middle Ground

▶ A “grey-box” fuzzer uses lightweight instrumentation to learn information about
program structure.
▶ Usually tracing basic block transitions or standard code coverage
▶ Recent advancements include the use of sanitizers [6]

▶ Almost as fast and scalable as black-box fuzzing
▶ Most popular approach by far
▶ Support for most program configurations

Leonardo Galli October 15, 2021 16 / 64

Fuzzing
Getting Started with Fuzzing

Leonardo Galli October 15, 2021 17 / 64

Choosing a Fuzzer

▶ Look for language support

▶ Otherwise, start with AFL++

▶ Supports many configurations
▶ Continuously updated
▶ (simple) grammar and advanced instrumentation supported

▶ Here: assume AFL++ used

Leonardo Galli October 15, 2021 18 / 64

Choosing a Fuzzer

▶ Look for language support
▶ Otherwise, start with AFL++

▶ Supports many configurations
▶ Continuously updated
▶ (simple) grammar and advanced instrumentation supported

▶ Here: assume AFL++ used

Leonardo Galli October 15, 2021 18 / 64

Choosing a Fuzzer

▶ Look for language support
▶ Otherwise, start with AFL++

▶ Supports many configurations

▶ Continuously updated
▶ (simple) grammar and advanced instrumentation supported

▶ Here: assume AFL++ used

Leonardo Galli October 15, 2021 18 / 64

Choosing a Fuzzer

▶ Look for language support
▶ Otherwise, start with AFL++

▶ Supports many configurations
▶ Continuously updated

▶ (simple) grammar and advanced instrumentation supported
▶ Here: assume AFL++ used

Leonardo Galli October 15, 2021 18 / 64

Choosing a Fuzzer

▶ Look for language support
▶ Otherwise, start with AFL++

▶ Supports many configurations
▶ Continuously updated
▶ (simple) grammar and advanced instrumentation supported

▶ Here: assume AFL++ used

Leonardo Galli October 15, 2021 18 / 64

Choosing a Fuzzer

▶ Look for language support
▶ Otherwise, start with AFL++

▶ Supports many configurations
▶ Continuously updated
▶ (simple) grammar and advanced instrumentation supported

▶ Here: assume AFL++ used

Leonardo Galli October 15, 2021 18 / 64

AFL++

▶ Based on American Fuzzy
Lop (AFL)

▶ Most well known
coverage-guided grey-box
fuzzer

▶ Uses execution tracing,
comparison coverage and
simple constraint solving to
mutate input

The famous AFL TUI

Leonardo Galli October 15, 2021 19 / 64

AFL++

▶ Based on American Fuzzy
Lop (AFL)

▶ Most well known
coverage-guided grey-box
fuzzer

▶ Uses execution tracing,
comparison coverage and
simple constraint solving to
mutate input

The famous AFL TUI

Leonardo Galli October 15, 2021 19 / 64

AFL++

▶ Based on American Fuzzy
Lop (AFL)

▶ Most well known
coverage-guided grey-box
fuzzer

▶ Uses execution tracing,
comparison coverage and
simple constraint solving to
mutate input

The famous AFL TUI

Leonardo Galli October 15, 2021 19 / 64

AFL++ Schematic

Input Queue

Seed Inputs

Input AFL++

InpatInpQue eueInput

fuzz_me Compiled TargetSource Code

initialize mutate next input
feedback

next

run separate instances with

compile

Leonardo Galli October 15, 2021 20 / 64

Seed Inputs

▶ Need to provide initial inputs to AFL++
▶ Often called “seed inputs” or just seeds
▶ Provide basis for mutation

▶ Some considerations:

▶ The smaller, the better
▶ No crashing inputs
▶ Wide range, no inputs should be very similar

Leonardo Galli October 15, 2021 21 / 64

Seed Inputs

▶ Need to provide initial inputs to AFL++
▶ Often called “seed inputs” or just seeds
▶ Provide basis for mutation

▶ Some considerations:

▶ The smaller, the better
▶ No crashing inputs
▶ Wide range, no inputs should be very similar

Leonardo Galli October 15, 2021 21 / 64

Seed Inputs

▶ Need to provide initial inputs to AFL++
▶ Often called “seed inputs” or just seeds
▶ Provide basis for mutation

▶ Some considerations:
▶ The smaller, the better

▶ No crashing inputs
▶ Wide range, no inputs should be very similar

Leonardo Galli October 15, 2021 21 / 64

Seed Inputs

▶ Need to provide initial inputs to AFL++
▶ Often called “seed inputs” or just seeds
▶ Provide basis for mutation

▶ Some considerations:
▶ The smaller, the better
▶ No crashing inputs

▶ Wide range, no inputs should be very similar

Leonardo Galli October 15, 2021 21 / 64

Seed Inputs

▶ Need to provide initial inputs to AFL++
▶ Often called “seed inputs” or just seeds
▶ Provide basis for mutation

▶ Some considerations:
▶ The smaller, the better
▶ No crashing inputs
▶ Wide range, no inputs should be very similar

Leonardo Galli October 15, 2021 21 / 64

Setup Fuzzing

▶ Select good target functions
▶ Complex parsing, many corner cases, etc.
▶ Often makes sense to throw fuzzing at only parts of the program

▶ Remove potentially difficult-to-fuzz features
▶ Checksums, cryptography, etc. lead to many invalid inputs
▶ Usually also slow down fuzzing
▶ Better to fully remove, to speed up fuzzing

Leonardo Galli October 15, 2021 22 / 64

Setup Fuzzing

▶ Select good target functions
▶ Complex parsing, many corner cases, etc.
▶ Often makes sense to throw fuzzing at only parts of the program

▶ Remove potentially difficult-to-fuzz features
▶ Checksums, cryptography, etc. lead to many invalid inputs
▶ Usually also slow down fuzzing
▶ Better to fully remove, to speed up fuzzing

Leonardo Galli October 15, 2021 22 / 64

Compiling your Program

▶ Follow instructions of fuzzer
▶ Usually compile with specialized compiler

▶ Adds necessary instrumentation
▶ Sanitizers help by crashing when common security issues occur

▶ Increases chances that crashes correspond to vulnerabilities
▶ Still not guaranteed, hence manual triaging is always required

Leonardo Galli October 15, 2021 23 / 64

Compiling your Program

▶ Follow instructions of fuzzer
▶ Usually compile with specialized compiler

▶ Adds necessary instrumentation

▶ Sanitizers help by crashing when common security issues occur
▶ Increases chances that crashes correspond to vulnerabilities
▶ Still not guaranteed, hence manual triaging is always required

Leonardo Galli October 15, 2021 23 / 64

Compiling your Program

▶ Follow instructions of fuzzer
▶ Usually compile with specialized compiler

▶ Adds necessary instrumentation
▶ Sanitizers help by crashing when common security issues occur

▶ Increases chances that crashes correspond to vulnerabilities
▶ Still not guaranteed, hence manual triaging is always required

Leonardo Galli October 15, 2021 23 / 64

Fuzzing
Binary-only Fuzzing

Leonardo Galli October 15, 2021 24 / 64

Oh no, I “Lost” my Source Code

▶ Question: What if you “lost” access to your source code?3

3This happens constantly to US military agencies.
Leonardo Galli October 15, 2021 25 / 64

Oh no, I “Lost” my Source Code

▶ Question: What if you “lost” access to your source code?3

▶ Solution: AFL++ supports fuzzing binary-only targets
▶ Uses QEMU (a CPU emulator)
▶ Inserts instrumentation on the fly
▶ Can be used to fuzz “cross-architecture”

▶ Solution: Can use tools like RetroWrite to statically rewrite binary with
instrumentation
▶ Results in faster fuzzing
▶ Much more tricky to do
▶ Still active area of research

3This happens constantly to US military agencies.
Leonardo Galli October 15, 2021 25 / 64

Oh no, I “Lost” my Source Code

▶ Question: What if you “lost” access to your source code?3

▶ Solution: AFL++ supports fuzzing binary-only targets
▶ Uses QEMU (a CPU emulator)
▶ Inserts instrumentation on the fly
▶ Can be used to fuzz “cross-architecture”

▶ Solution: Can use tools like RetroWrite to statically rewrite binary with
instrumentation
▶ Results in faster fuzzing
▶ Much more tricky to do
▶ Still active area of research

3This happens constantly to US military agencies.
Leonardo Galli October 15, 2021 25 / 64

Fuzzing the iPhone Boot Loader

Leonardo Galli October 15, 2021 26 / 64

Motivation

▶ iPhone security major talking point in the press
▶ “Apple Issues Emergency Security Updates to Close a Spyware Flaw” [7]
▶ “iOS zero-day let SolarWinds hackers compromise fully updated iPhones” [3]
▶ “New iPhone ‘Zero Day’ Hack Has Existed For Months” [4]

▶ Boot loader very important for security guarantees
⇒ Vulnerabilities in the iPhone boot loader are highly sought after.

▶ Goal: Apply state-of-the-art fuzzing to iPhone boot loader

Leonardo Galli October 15, 2021 27 / 64

Motivation

▶ iPhone security major talking point in the press
▶ “Apple Issues Emergency Security Updates to Close a Spyware Flaw” [7]
▶ “iOS zero-day let SolarWinds hackers compromise fully updated iPhones” [3]
▶ “New iPhone ‘Zero Day’ Hack Has Existed For Months” [4]

▶ Boot loader very important for security guarantees
⇒ Vulnerabilities in the iPhone boot loader are highly sought after.
▶ Goal: Apply state-of-the-art fuzzing to iPhone boot loader

Leonardo Galli October 15, 2021 27 / 64

Fuzzing the iPhone Boot Loader
Background

Leonardo Galli October 15, 2021 28 / 64

iPhone Boot Sequence

▶ Boot loader responsible for initializing hardware and setting up everything for the
main OS to run

▶ Consists of multiple stages on iPhones
▶ Stages form a secure boot chain

▶ Every stage loads, verifies and runs next one
▶ Verification uses standard X.509 certificate chains, RSA signatures
▶ Every stage is stored in a custom format, called IMG4

Leonardo Galli October 15, 2021 29 / 64

Schematic Boot Diagram

Device
Power On SecureROM iBoot

iBSS iBEC

Kernelcache

DFU Recovery/Upgrade

Schematic view of the iOS boot sequence and its boot loader stages adapted from [5].

Leonardo Galli October 15, 2021 30 / 64

Fuzzing the iPhone Boot Loader
Threat Model

Leonardo Galli October 15, 2021 31 / 64

Attacking the Secure Boot Chain

▶ Question: Why could attacking SecureROM be interesting?

▶ Exploit in SecureROM very powerful:
▶ Getting kernel code execution is trivial
▶ Can lead to larger attack surface for Secure Enclave Processor (SEP) [9]
▶ Cannot be patched
▶ Might lead to persistence

▶ Two major threat models:
▶ Physical access: Attacker can interface with USB DFU protocol
▶ Root on device: Attacker can write malformed IMG4 file to disk

▶ We assume the physical access threat model

Leonardo Galli October 15, 2021 32 / 64

Attacking the Secure Boot Chain

▶ Question: Why could attacking SecureROM be interesting?
▶ Exploit in SecureROM very powerful:

▶ Getting kernel code execution is trivial
▶ Can lead to larger attack surface for Secure Enclave Processor (SEP) [9]
▶ Cannot be patched
▶ Might lead to persistence

▶ Two major threat models:
▶ Physical access: Attacker can interface with USB DFU protocol
▶ Root on device: Attacker can write malformed IMG4 file to disk

▶ We assume the physical access threat model

Leonardo Galli October 15, 2021 32 / 64

Attacking the Secure Boot Chain

▶ Question: Why could attacking SecureROM be interesting?
▶ Exploit in SecureROM very powerful:

▶ Getting kernel code execution is trivial
▶ Can lead to larger attack surface for Secure Enclave Processor (SEP) [9]
▶ Cannot be patched
▶ Might lead to persistence

▶ Two major threat models:
▶ Physical access: Attacker can interface with USB DFU protocol
▶ Root on device: Attacker can write malformed IMG4 file to disk

▶ We assume the physical access threat model

Leonardo Galli October 15, 2021 32 / 64

Attacking the Secure Boot Chain

▶ Question: Why could attacking SecureROM be interesting?
▶ Exploit in SecureROM very powerful:

▶ Getting kernel code execution is trivial
▶ Can lead to larger attack surface for Secure Enclave Processor (SEP) [9]
▶ Cannot be patched
▶ Might lead to persistence

▶ Two major threat models:
▶ Physical access: Attacker can interface with USB DFU protocol
▶ Root on device: Attacker can write malformed IMG4 file to disk

▶ We assume the physical access threat model

Leonardo Galli October 15, 2021 32 / 64

Schematic Threat Model

SecureROM getDFUImage image_load iBoot

IMG4Memory

IMG4 Disk

Root
Access

IMG4
Physical
Access

USB Messages

*

*

Controlled

Controlled

Controlled

Leonardo Galli October 15, 2021 33 / 64

Fuzzing the iPhone Boot Loader
Building a Fuzzable Binary

Leonardo Galli October 15, 2021 34 / 64

Challenges

▶ Normally: Build from source with instrumentation

▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 35 / 64

Challenges

▶ Normally: Build from source with instrumentation
▶ Binary blob without symbols

▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 35 / 64

Challenges

▶ Normally: Build from source with instrumentation
▶ Binary blob without symbols
▶ Designed for Apple processors

▶ Bare metal or bust

Leonardo Galli October 15, 2021 35 / 64

Challenges

▶ Normally: Build from source with instrumentation
▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 35 / 64

Solution: Static Analysis

__int64 sub_100009BCC(char *a1)
{
sub_1000127BC();
if (a1 == aKsat || a1 == &unk_19C0107C0)
sub_100008F90();

if (*((_QWORD *)a1 + 3) || *((_QWORD *)a1 + 4))
sub_100009C50(a1 + 24);

sub_100009C50(a1 + 8);
v3 = sub_100001C14(a1);
sub_100012810(v3);
return sub_10000FEF4(a1);

}

Leonardo Galli October 15, 2021 36 / 64

Solution: Static Analysis

void task_destroy(struct task *a1)
{
enter_critical_section();
if (a1 == &bootstrap_task || a1 == &idle_task)
panic();

if (a1->queue_node.prev || a1->queue_node.next)
list_delete(&a1->queue_node);

list_delete(&a1->task_list_node);
arch_task_destroy(a1);
exit_critical_section();
heap_free(a1);

}

Leonardo Galli October 15, 2021 36 / 64

Solution: Static Analysis

▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 36 / 64

Solution: Static Analysis

▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 36 / 64

Solution: Static Analysis

▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 36 / 64

Solution: Static Analysis

▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 36 / 64

Solution: Binary Patching

// Convert PAC branch to normal branch
r.PatchInstruction("blraaz ").Patch(r.PatchTmpl("blr {{(index .Args 0)}}"))
// Force bzero to never use dca
symb.rom__bzero.PatchOffset(0x18).Patch(r.PatchASM("cmp x2, #0x40000"))
// Override USB driver with custom one
symb.rom_synopsys_otg_controller_init.PatchOffset(0).Patch(

r.PatchFunctionNoLink("emmutaler_controller_init")
)
// Patch in custom root certificate
certPath := filepath.Join(filepath.Dir(r.inputPath), "..", "certs", "root_ca.der")
certData, _ := os.ReadFile(certPath)
r.RawPatch(symb.rom_root_ca.Start, len(certData),

fmt.Sprintf(`.incbin "%s"`, certPath))

Leonardo Galli October 15, 2021 37 / 64

Solution: Binary Patching

▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 37 / 64

Solution: Binary Patching

▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 37 / 64

Solution: Binary Patching

▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 37 / 64

Solution: Binary Patching

▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 37 / 64

Solution: SecureROM as a Library

▶ Main idea: Create normal Linux program calling into SecureROM as necessary.

▶ Can use existing fuzzers without modifications
▶ Functions interesting to fuzz do not need low-level access
▶ Can fuzz selectively
▶ Easy to debug without complicated fuzzing harness

Leonardo Galli October 15, 2021 38 / 64

Solution: SecureROM as a Library

▶ Main idea: Create normal Linux program calling into SecureROM as necessary.
▶ Can use existing fuzzers without modifications
▶ Functions interesting to fuzz do not need low-level access
▶ Can fuzz selectively
▶ Easy to debug without complicated fuzzing harness

Leonardo Galli October 15, 2021 38 / 64

Solution: SecureROM as a Library

▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 38 / 64

Solution: SecureROM as a Library

▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 38 / 64

Solution: SecureROM as a Library

▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 38 / 64

Solution: SecureROM as a Library

▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust

Leonardo Galli October 15, 2021 38 / 64

IMG4 Fuzzing

SecureROM getDFUImage image_load iBoot

IMG4Memory

IMG4 Disk

Root
Access

IMG4
Physical
Access

USB Messages

*

*

Controlled

Controlled

Controlled

fuzz

Leonardo Galli October 15, 2021 39 / 64

IMG4 Schematic

SecureROM image_loadfuzz_meTarget

InputAFL++

Schematic view of the high-level fuzzing design for IMG4 parsing.

Leonardo Galli October 15, 2021 40 / 64

Results

▶ Ran for one week
▶ No interesting crashes
▶ Interesting results with respect to

speed

Leonardo Galli October 15, 2021 41 / 64

IMG4 Fuzzing
Fuzzing Speed

Leonardo Galli October 15, 2021 42 / 64

Fuzzing Speed

▶ Problem: Fuzzing speed is much
lower than expected

▶ Multiple factors:

▶ Target restarted for every run
▶ PAC instructions are slow in software

▶ Solution: Patch QEMU to ignore PAC
▶ Solution: Use persistent mode for

better performance

Leonardo Galli October 15, 2021 43 / 64

Fuzzing Speed

▶ Problem: Fuzzing speed is much
lower than expected

▶ Multiple factors:

▶ Target restarted for every run
▶ PAC instructions are slow in software

▶ Solution: Patch QEMU to ignore PAC
▶ Solution: Use persistent mode for

better performance

We get it, it is slow

Leonardo Galli October 15, 2021 43 / 64

Fuzzing Speed

▶ Problem: Fuzzing speed is much
lower than expected

▶ Multiple factors:
▶ Target restarted for every run

▶ PAC instructions are slow in software
▶ Solution: Patch QEMU to ignore PAC
▶ Solution: Use persistent mode for

better performance

We get it, it is slow

Leonardo Galli October 15, 2021 43 / 64

Fuzzing Speed

▶ Problem: Fuzzing speed is much
lower than expected

▶ Multiple factors:
▶ Target restarted for every run
▶ PAC instructions are slow in software

▶ Solution: Patch QEMU to ignore PAC
▶ Solution: Use persistent mode for

better performance

We get it, it is slow

Leonardo Galli October 15, 2021 43 / 64

Fuzzing Speed

▶ Problem: Fuzzing speed is much
lower than expected

▶ Multiple factors:
▶ Target restarted for every run
▶ PAC instructions are slow in software

▶ Solution: Patch QEMU to ignore PAC

▶ Solution: Use persistent mode for
better performance

We get it, it is slow

Leonardo Galli October 15, 2021 43 / 64

Fuzzing Speed

▶ Problem: Fuzzing speed is much
lower than expected

▶ Multiple factors:
▶ Target restarted for every run
▶ PAC instructions are slow in software

▶ Solution: Patch QEMU to ignore PAC
▶ Solution: Use persistent mode for

better performance We get it, it is slow

Leonardo Galli October 15, 2021 43 / 64

Persistent Mode
▶ AFL++ creates “fake” loop by going back to fuzzing function after exit
▶ Should provide great speedup

▶ Problem: Fuzzing is now actually slower

Leonardo Galli October 15, 2021 44 / 64

Persistent Mode
▶ AFL++ creates “fake” loop by going back to fuzzing function after exit
▶ Should provide great speedup
▶ Problem: Fuzzing is now actually slower

Leonardo Galli October 15, 2021 44 / 64

Persistent Mode
▶ AFL++ creates “fake” loop by going back to fuzzing function after exit
▶ Should provide great speedup
▶ Problem: Fuzzing is now actually slower
▶ AFL++ snapshots all writable memory pages

▶ Solution: Patch AFL++ to only snapshot certain pages
▶ Solution: Use kernel module for copy-on-write snapshotting [10]

Leonardo Galli October 15, 2021 44 / 64

Persistent Mode
▶ AFL++ creates “fake” loop by going back to fuzzing function after exit
▶ Should provide great speedup
▶ Problem: Fuzzing is now actually slower
▶ AFL++ snapshots all writable memory pages
▶ Solution: Patch AFL++ to only snapshot certain pages

▶ Solution: Use kernel module for copy-on-write snapshotting [10]

Leonardo Galli October 15, 2021 44 / 64

Persistent Mode
▶ AFL++ creates “fake” loop by going back to fuzzing function after exit
▶ Should provide great speedup
▶ Problem: Fuzzing is now actually slower
▶ AFL++ snapshots all writable memory pages
▶ Solution: Patch AFL++ to only snapshot certain pages
▶ Solution: Use kernel module for copy-on-write snapshotting [10]

Leonardo Galli October 15, 2021 44 / 64

IMG4 Fuzzing Speed Results

1 2 3 4

102

103

104

Instance #

ex
ec
/s

Standalone
Persistent

Kernel Module

Leonardo Galli October 15, 2021 45 / 64

USB Fuzzing

SecureROM getDFUImage image_load iBoot

IMG4Memory

IMG4 Disk

Root
Access

IMG4
Physical
Access

USB Messages

*

*

Controlled

Controlled

Controlled

fuzz

Leonardo Galli October 15, 2021 46 / 64

USB Schematic

SecureROM

usb_core_handle_usb_control_receive

getDFUImage

Target

usb_main_thread

fuzz_me

InputAFL++

…

…

Schematic view of the high-level fuzzing design for USB messages.

Leonardo Galli October 15, 2021 47 / 64

Short Refresher on the Heap

▶ Provides mechanism for dynamic memory allocation

▶ Used by most programs, but might not be directly visible
▶ void* ptr = malloc(100) : allocate 100 bytes

▶ Starting at ptr , 100 bytes of memory available for anything
▶ Usually called dynamically allocated buffer

▶ free(ptr) : release memory previously allocated to be used elsewhere
▶ ptr should not be used afterwards
▶ Needed, since memory management is manual
▶ Everything allocated must be freed by programmer

Leonardo Galli October 15, 2021 48 / 64

Short Refresher on the Heap

▶ Provides mechanism for dynamic memory allocation
▶ Used by most programs, but might not be directly visible

▶ void* ptr = malloc(100) : allocate 100 bytes
▶ Starting at ptr , 100 bytes of memory available for anything
▶ Usually called dynamically allocated buffer

▶ free(ptr) : release memory previously allocated to be used elsewhere
▶ ptr should not be used afterwards
▶ Needed, since memory management is manual
▶ Everything allocated must be freed by programmer

Leonardo Galli October 15, 2021 48 / 64

Short Refresher on the Heap

▶ Provides mechanism for dynamic memory allocation
▶ Used by most programs, but might not be directly visible
▶ void* ptr = malloc(100) : allocate 100 bytes

▶ Starting at ptr , 100 bytes of memory available for anything
▶ Usually called dynamically allocated buffer

▶ free(ptr) : release memory previously allocated to be used elsewhere
▶ ptr should not be used afterwards
▶ Needed, since memory management is manual
▶ Everything allocated must be freed by programmer

Leonardo Galli October 15, 2021 48 / 64

Short Refresher on the Heap

▶ Provides mechanism for dynamic memory allocation
▶ Used by most programs, but might not be directly visible
▶ void* ptr = malloc(100) : allocate 100 bytes

▶ Starting at ptr , 100 bytes of memory available for anything
▶ Usually called dynamically allocated buffer

▶ free(ptr) : release memory previously allocated to be used elsewhere
▶ ptr should not be used afterwards
▶ Needed, since memory management is manual
▶ Everything allocated must be freed by programmer

Leonardo Galli October 15, 2021 48 / 64

checkm8

Use-After-Free (UAF)
A use-after-free occurs when a pointer to a buffer on the heap is used, after said buffer
has already been freed.

▶ Previously found vulnerability in DFU protocol titled “checkm8” [1]
▶ Core bug exploited: use-after-free (UAF) in DFU protocol handling
▶ Before this thesis, iPhone 4S to X were publicly known to exhibit the UAF bug [1].

▶ Goal: Our fuzzing finds the same UAF bug
▶ Shows that the fuzzing is successful, since it can find bugs

Leonardo Galli October 15, 2021 49 / 64

checkm8

Use-After-Free (UAF)
A use-after-free occurs when a pointer to a buffer on the heap is used, after said buffer
has already been freed.

▶ Previously found vulnerability in DFU protocol titled “checkm8” [1]
▶ Core bug exploited: use-after-free (UAF) in DFU protocol handling
▶ Before this thesis, iPhone 4S to X were publicly known to exhibit the UAF bug [1].
▶ Goal: Our fuzzing finds the same UAF bug
▶ Shows that the fuzzing is successful, since it can find bugs

Leonardo Galli October 15, 2021 49 / 64

The Quest for checkm8

▶ Problem: Fuzzer does not find any crashes
▶ Surprising at first

▶ Multiple possible reasons:

▶ Fuzzing does not work correctly
▶ Fuzzing the wrong parts
▶ Fuzzing finds the bug, but does not crash

Leonardo Galli October 15, 2021 50 / 64

The Quest for checkm8

▶ Problem: Fuzzer does not find any crashes
▶ Surprising at first
▶ Multiple possible reasons:

▶ Fuzzing does not work correctly

▶ Fuzzing the wrong parts
▶ Fuzzing finds the bug, but does not crash

Leonardo Galli October 15, 2021 50 / 64

The Quest for checkm8

▶ Problem: Fuzzer does not find any crashes
▶ Surprising at first
▶ Multiple possible reasons:

▶ Fuzzing does not work correctly
▶ Fuzzing the wrong parts

▶ Fuzzing finds the bug, but does not crash

Leonardo Galli October 15, 2021 50 / 64

The Quest for checkm8

▶ Problem: Fuzzer does not find any crashes
▶ Surprising at first
▶ Multiple possible reasons:

▶ Fuzzing does not work correctly
▶ Fuzzing the wrong parts
▶ Fuzzing finds the bug, but does not crash

Leonardo Galli October 15, 2021 50 / 64

The Quest for checkm8

▶ Problem: Fuzzer does not find any crashes
▶ Surprising at first
▶ Multiple possible reasons:

▶ Fuzzing does not work correctly
▶ Fuzzing the wrong parts
▶ Fuzzing finds the bug, but does not crash

Leonardo Galli October 15, 2021 50 / 64

Heap Feng Shui

Heap Feng Shui [8]
The process of carefully manipulating the heap, allowing exploitation. It is also
sometimes called “heap grooming”. Usually, it consists of allocating and freeing very
specific sizes in a specific order to get the heap into a very specific state.

▶ checkm8 performs complicated “heap feng shui” before actual exploit
▶ Otherwise, exploited buffer is allocated at the same place
▶ Not exclusive to SecureROM

▶ Solution: Custom allocator tailored to find heap bugs that depend on specific
state

Leonardo Galli October 15, 2021 51 / 64

Heap Feng Shui

Heap Feng Shui [8]
The process of carefully manipulating the heap, allowing exploitation. It is also
sometimes called “heap grooming”. Usually, it consists of allocating and freeing very
specific sizes in a specific order to get the heap into a very specific state.

▶ checkm8 performs complicated “heap feng shui” before actual exploit
▶ Otherwise, exploited buffer is allocated at the same place
▶ Not exclusive to SecureROM
▶ Solution: Custom allocator tailored to find heap bugs that depend on specific

state

Leonardo Galli October 15, 2021 51 / 64

USB Fuzzing
Fuzzing-Enabling Thread-safe Allocator (FETA)

Leonardo Galli October 15, 2021 52 / 64

FETA Overview

▶ Drop-in replacement for any code using malloc and free
▶ Thread-safe
▶ Can detect and crash on:

▶ heap overflows, both read and write
▶ use-after-free, both read and write

▶ Basic idea:

▶ Want to crash as soon as bug happens
▶ Access to unmapped page causes immediate crash, for both read and write
▶ Solution: “isolate” every heap chunk to its own set of pages

Leonardo Galli October 15, 2021 53 / 64

FETA Overview

▶ Drop-in replacement for any code using malloc and free
▶ Thread-safe
▶ Can detect and crash on:

▶ heap overflows, both read and write
▶ use-after-free, both read and write

▶ Basic idea:
▶ Want to crash as soon as bug happens

▶ Access to unmapped page causes immediate crash, for both read and write
▶ Solution: “isolate” every heap chunk to its own set of pages

Leonardo Galli October 15, 2021 53 / 64

FETA Overview

▶ Drop-in replacement for any code using malloc and free
▶ Thread-safe
▶ Can detect and crash on:

▶ heap overflows, both read and write
▶ use-after-free, both read and write

▶ Basic idea:
▶ Want to crash as soon as bug happens
▶ Access to unmapped page causes immediate crash, for both read and write

▶ Solution: “isolate” every heap chunk to its own set of pages

Leonardo Galli October 15, 2021 53 / 64

FETA Overview

▶ Drop-in replacement for any code using malloc and free
▶ Thread-safe
▶ Can detect and crash on:

▶ heap overflows, both read and write
▶ use-after-free, both read and write

▶ Basic idea:
▶ Want to crash as soon as bug happens
▶ Access to unmapped page causes immediate crash, for both read and write
▶ Solution: “isolate” every heap chunk to its own set of pages

Leonardo Galli October 15, 2021 53 / 64

Example Allocations with FETA

Mapped Pages

Heap Chunk

Guard Page

Freed Pages

initialize_heap(0x20000); ⇐
void* chunk1 = malloc(0x100);
void* chunk2 = malloc(0x1000);
free(chunk2);

0x
20
00
0

curr_addr

Leonardo Galli October 15, 2021 54 / 64

Example Allocations with FETA

Mapped Pages

Heap Chunk

Guard Page

Freed Pages

initialize_heap(0x20000);
void* chunk1 = malloc(0x100); ⇐
void* chunk2 = malloc(0x1000);
free(chunk2);

0x
20
f0
0

chunk1

0x
22
00
0

curr_addr

Leonardo Galli October 15, 2021 54 / 64

Example Allocations with FETA

Mapped Pages

Heap Chunk

Guard Page

Freed Pages

initialize_heap(0x20000);
void* chunk1 = malloc(0x100);
void* chunk2 = malloc(0x1000); ⇐
free(chunk2);

0x
20
f0
0

chunk1

0x
23
00
0

chunk2

0x
24
00
0

curr_addr

Leonardo Galli October 15, 2021 54 / 64

Example Allocations with FETA

Mapped Pages

Heap Chunk

Guard Page

Freed Pages

initialize_heap(0x20000);
void* chunk1 = malloc(0x100);
void* chunk2 = malloc(0x1000);
free(chunk2); ⇐

0x
20
f0
0

chunk1

0x
23
00
0

chunk2

0x
24
00
0

curr_addr

Leonardo Galli October 15, 2021 54 / 64

USB Fuzzing
Results

Leonardo Galli October 15, 2021 55 / 64

Overall Results

▶ checkm8 could be found using FETA
▶ Time-to-exposure (TTE) very short
▶ Confirms that checkm8 still present on

iPhone 11

▶ Question: What other bugs are we
missing?

▶ Interesting future research
possibilities

▶ Expand FETA to also detect memory
leaks via fuzzing

▶ Threading library to expose race
conditions?

Leonardo Galli October 15, 2021 56 / 64

Overall Results

▶ checkm8 could be found using FETA
▶ Time-to-exposure (TTE) very short
▶ Confirms that checkm8 still present on

iPhone 11
▶ Question: What other bugs are we

missing?

▶ Interesting future research
possibilities

▶ Expand FETA to also detect memory
leaks via fuzzing

▶ Threading library to expose race
conditions?

Leonardo Galli October 15, 2021 56 / 64

Overall Results

▶ checkm8 could be found using FETA
▶ Time-to-exposure (TTE) very short
▶ Confirms that checkm8 still present on

iPhone 11
▶ Question: What other bugs are we

missing?
▶ Interesting future research

possibilities

▶ Expand FETA to also detect memory
leaks via fuzzing

▶ Threading library to expose race
conditions?

Leonardo Galli October 15, 2021 56 / 64

Overall Results

▶ checkm8 could be found using FETA
▶ Time-to-exposure (TTE) very short
▶ Confirms that checkm8 still present on

iPhone 11
▶ Question: What other bugs are we

missing?
▶ Interesting future research

possibilities
▶ Expand FETA to also detect memory

leaks via fuzzing

▶ Threading library to expose race
conditions?

Leonardo Galli October 15, 2021 56 / 64

Overall Results

▶ checkm8 could be found using FETA
▶ Time-to-exposure (TTE) very short
▶ Confirms that checkm8 still present on

iPhone 11
▶ Question: What other bugs are we

missing?
▶ Interesting future research

possibilities
▶ Expand FETA to also detect memory

leaks via fuzzing
▶ Threading library to expose race

conditions?

Leonardo Galli October 15, 2021 56 / 64

Conclusion

Leonardo Galli October 15, 2021 57 / 64

Conclusion

▶ Fuzzing becoming more and more important

▶ Setup can be quite quick with modern tooling
▶ No more excuses

▶ Does not replace security engineers

▶ iPhone boot loader fuzzing was successful

▶ Confirmed existence of checkm8 on iPhone 11

▶ FETA performs great and raises interesting questions

Leonardo Galli October 15, 2021 58 / 64

Conclusion

▶ Fuzzing becoming more and more important
▶ Setup can be quite quick with modern tooling

▶ No more excuses

▶ Does not replace security engineers

▶ iPhone boot loader fuzzing was successful

▶ Confirmed existence of checkm8 on iPhone 11

▶ FETA performs great and raises interesting questions

Leonardo Galli October 15, 2021 58 / 64

Conclusion

▶ Fuzzing becoming more and more important
▶ Setup can be quite quick with modern tooling

▶ No more excuses
▶ Does not replace security engineers

▶ iPhone boot loader fuzzing was successful

▶ Confirmed existence of checkm8 on iPhone 11

▶ FETA performs great and raises interesting questions

Leonardo Galli October 15, 2021 58 / 64

Conclusion

▶ Fuzzing becoming more and more important
▶ Setup can be quite quick with modern tooling

▶ No more excuses
▶ Does not replace security engineers

▶ iPhone boot loader fuzzing was successful
▶ Confirmed existence of checkm8 on iPhone 11

▶ FETA performs great and raises interesting questions

Leonardo Galli October 15, 2021 58 / 64

Conclusion

▶ Fuzzing becoming more and more important
▶ Setup can be quite quick with modern tooling

▶ No more excuses
▶ Does not replace security engineers

▶ iPhone boot loader fuzzing was successful
▶ Confirmed existence of checkm8 on iPhone 11

▶ FETA performs great and raises interesting questions

Leonardo Galli October 15, 2021 58 / 64

Useful Links

Fuzzing
▶ Fuzzing in Go 1.18: go.dev/blog/fuzz-beta
▶ AFL++ documentation: aflplus.plus
▶ Fuzzing-101: github.com/antonio-morales/Fuzzing101
▶ Awesome Fuzzing Discord: discord.gg/vmAGPuUUvn

Other
▶ Source code for iPhone boot loader fuzzing: github.com/galli-leo/emmutaler
▶ flagbot homepage: flagbot.ch
▶ These slides: flagbot.ch/material

Leonardo Galli October 15, 2021 59 / 64

https://go.dev/blog/fuzz-beta
https://aflplus.plus
https://github.com/antonio-morales/Fuzzing101
https://discord.gg/vmAGPuUUvn
https://github.com/galli-leo/emmutaler
https://flagbot.ch
https://flagbot.ch/material

Questions?

Leonardo Galli October 15, 2021 60 / 64

Bibliography

Leonardo Galli October 15, 2021 61 / 64

[1] axi0mX. EPIC JAILBREAK: Introducing checkm8 (read ”checkmate”), a
permanent unpatchable bootrom exploit for hundreds of millions of iOS devices.
Most generations of iPhones and iPads are vulnerable: from iPhone 4S (A5 chip)
to iPhone 8 and iPhone X (A11 chip). Sept. 27, 2019. url:
https://twitter.com/axi0mX/status/1177542201670168576.
https://twitter.com/axi0mX.

[2] Clusterfuzz. url: https://github.com/google/clusterfuzz (visited on
10/14/2021).

[3] D. Goodin. Ios zero-day let solarwinds hackers compromise fully updated
iphones. 2021. url:
https://arstechnica.com/gadgets/2021/07/solarwinds-hackers-used-
an-ios-0-day-to-steal-google-and-microsoft-credentials/ (visited
on 09/21/2021).

Leonardo Galli October 15, 2021 62 / 64

https://twitter.com/axi0mX/status/1177542201670168576
https://github.com/google/clusterfuzz
https://arstechnica.com/gadgets/2021/07/solarwinds-hackers-used-an-ios-0-day-to-steal-google-and-microsoft-credentials/
https://arstechnica.com/gadgets/2021/07/solarwinds-hackers-used-an-ios-0-day-to-steal-google-and-microsoft-credentials/

[4] G. Kelly. New iphone ‘zero day’ hack has existed for months. 2021. url:
https://www.forbes.com/sites/gordonkelly/2021/07/31/apple-
iphone-12-pro-max-memory-hack-warning-ios-update-iphones-
ipads/?sh=2e15b393f8e5 (visited on 09/21/2021).

[5] J. Levin. *OS Internals Volume II: Kernel Mode. Technologeeks.com, 2020.
[6] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida. ParmeSan: Sanitizer-guided

Greybox Fuzzing. In USENIX Security, Aug. 2020. url:
https://comsec.ethz.ch/wp-content/files/parmesan_sec20.pdf.

[7] N. Perlroth. Apple issues emergency security updates to close a spyware flaw.
url: https://www.nytimes.com/2021/09/13/technology/apple-
software-update-spyware-nso-group.html (visited on 09/18/2021).

[8] A. Sotirov. Heap feng shui in javascript. Black Hat Europe, 2007:11–20, 2007.
[9] H. Xu. Attack Secure Boot of SEP. Paper presented at MOSEC 2020, Shanghai,

China. 2020.

Leonardo Galli October 15, 2021 63 / 64

https://www.forbes.com/sites/gordonkelly/2021/07/31/apple-iphone-12-pro-max-memory-hack-warning-ios-update-iphones-ipads/?sh=2e15b393f8e5
https://www.forbes.com/sites/gordonkelly/2021/07/31/apple-iphone-12-pro-max-memory-hack-warning-ios-update-iphones-ipads/?sh=2e15b393f8e5
https://www.forbes.com/sites/gordonkelly/2021/07/31/apple-iphone-12-pro-max-memory-hack-warning-ios-update-iphones-ipads/?sh=2e15b393f8e5
https://comsec.ethz.ch/wp-content/files/parmesan_sec20.pdf
https://www.nytimes.com/2021/09/13/technology/apple-software-update-spyware-nso-group.html
https://www.nytimes.com/2021/09/13/technology/apple-software-update-spyware-nso-group.html

[10] W. Xu, S. Kashyap, C. Min, and T. Kim. Designing new operating primitives to
improve fuzzing performance. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17,
pages 2313–2328, Dallas, Texas, USA. Association for Computing Machinery,
2017. isbn: 9781450349468. doi: 10.1145/3133956.3134046. url:
https://doi.org/10.1145/3133956.3134046.

Leonardo Galli October 15, 2021 64 / 64

https://doi.org/10.1145/3133956.3134046
https://doi.org/10.1145/3133956.3134046

	Introduction
	Fuzzing
	Types of Fuzzing
	Getting Started with Fuzzing
	Binary-only Fuzzing

	Fuzzing the iPhone Boot Loader
	Background
	Threat Model
	Building a Fuzzable Binary

	IMG4 Fuzzing
	Fuzzing Speed

	USB Fuzzing
	Fuzzing-Enabling Thread-safe Allocator (FETA)
	Results

	Conclusion
	Bibliography

