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About Me

▶ Finished my Bachelor of Computer Science at ETH
▶ Member of flagbot since over three years
▶ President of flagbot since over two years
▶ Lead organizer since half a year

Leonardo Galli
leonardo.galli@vis.ethz.ch
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About flagbot

▶ VIS committee and ETH’s Capture the Flag team
▶ CTFs are team-based cybersecurity competitions,

often involving real-world attacks
▶ Ranked 1st place in Switzerland in 2019 and 20201

▶ Playing CTFs on weekends
▶ Weekly meetings on Monday at 19:00 over Zoom

and in person at CAB H52, open to anyone
▶ Discussion of challenges and lectures aimed at

beginners (recordings available on
flagbot.ch/material)

Contact: ctf@vis.ethz.ch
More Information: flagbot.ch

1According to ctftime.org
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About organizers

▶ Joint team between flagbot, polygl0ts (EPFL),
cr0wn (UK) and secret.club

▶ Team up together for larger events
▶ Currently ranked 7th worldwide2

▶ Multiple big wins, such as best European team at
DEF CON and #1 at Tencent CTF 2021 Contact: org@anize.rs

Website: org.anize.rs

2According to ctftime.org
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Motivation
▶ Imagine you are company REDACTED

▶ Many security flaws are discovered
▶ “ REDACTED Issues Emergency Security Updates to Close a Spyware Flaw” [7]
▶ “ REDACTED zero-day let SolarWinds hackers compromise fully updated

REDACTED ” [3]
▶ “New REDACTED ‘Zero Day’ Hack Has Existed For Months” [4]
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Automatic Vulnerability Discovery

▶ Solution: Use modern automation to find
vulnerabilities

▶ Introducing “fuzzing”

▶ Automatically find vulnerabilities
▶ Can be run unsupervised
▶ Great track record

▶ Becoming more and more popular and useful
▶ Native fuzzing support in go 1.18
▶ OSS-Fuzz provides continuous fuzzing for OSS

▶ “As of February 2021, 26,000+ bugs found in
over 400 open source projects integrated with
OSS-Fuzz.” [2]

Not this kind of automation
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Fuzzing
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Basic Idea

Almost the right kind of fuzzy3.

3Depending on the context.
Leonardo Galli October 15, 2021 11 / 64



Basic Idea

▶ Basic fuzzing loop:

1. Generate (random) input
2. Run application with generated input
3. Observe application behaviour

⇒ Any observed crashes indicate presence of bugs
▶ Not necessarily any vulnerabilities yet, more on that later
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Fuzzing
Types of Fuzzing
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Overview

▶ Fuzzing encompasses broad spectrum of techniques
▶ Three important ways of categorizing fuzzers
1. How input is generated

▶ Mutate existing input
▶ Generate from scratch
▶ Usually mutation based

2. Awareness of input structure
3. Awareness of application structure

Leonardo Galli October 15, 2021 13 / 64



Awareness of Input Structure

▶ Fuzzing input can be anything, not just text
▶ Inputs should have certain structures

▶ Structure distinguishes valid from invalid input
▶ Example of structure is a file format

▶ Question: Why do we care about valid input when fuzzing?
⇒ Fuzzer should tow fine line between valid and invalid input
▶ A “smart” (model-based or grammar-based) fuzzer uses pre-existing knowledge

about the input structure to generate “valid enough” inputs.
▶ A “dumb” fuzzer does no such thing
▶ Modern fuzzers usually use a combination of both
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Awareness of Application Structure

▶ Fuzzing effective if high degree of coverage achieved

▶ A “black-box” fuzzer is unaware of internal program structure.

▶ Blindly test inputs and hope for crashes
▶ Very fast and easy to parallelize
▶ Quick setup for any program

▶ A “white-box” fuzzer is fully aware and uses program analysis to reach high
coverage and critical points.

▶ For example, symbolic execution or taint analysis
▶ Heavyweight analysis, slow and difficult to scale
▶ Cannot be applied to every application without significant effort
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A Middle Ground

▶ A “grey-box” fuzzer uses lightweight instrumentation to learn information about
program structure.

▶ Usually tracing basic block transitions or standard code coverage
▶ Recent advancements include the use of sanitizers [6]

▶ Almost as fast and scalable as black-box fuzzing
▶ Most popular approach by far
▶ Support for most program configurations
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Fuzzing
Getting Started with Fuzzing
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Choosing a Fuzzer

▶ Look for language support

▶ Otherwise, start with AFL++

▶ Supports many configurations
▶ Continuously updated
▶ (simple) grammar and advanced instrumentation supported

▶ Here: assume AFL++ used
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AFL++

▶ Based on American Fuzzy
Lop (AFL)

▶ Most well known
coverage-guided grey-box
fuzzer

▶ Uses execution tracing,
comparison coverage and
simple constraint solving to
mutate input

The famous AFL TUI
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AFL++ Schematic

Input Queue

Seed Inputs

Input AFL++

InpatInpQue eueInput

fuzz_me Compiled TargetSource Code

initialize mutate next input
feedback

next

run separate instances with

compile
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Seed Inputs

▶ Need to provide initial inputs to AFL++
▶ Often called “seed inputs” or just seeds
▶ Provide basis for mutation

▶ Some considerations:

▶ The smaller, the better
▶ No crashing inputs
▶ Wide range, no inputs should be very similar
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Setup Fuzzing

▶ Select good target functions
▶ Complex parsing, many corner cases, etc.
▶ Often makes sense to throw fuzzing at only parts of the program

▶ Remove potentially difficult-to-fuzz features
▶ Checksums, cryptography, etc. lead to many invalid inputs
▶ Usually also slow down fuzzing
▶ Better to fully remove, to speed up fuzzing
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Compiling your Program

▶ Follow instructions of fuzzer
▶ Usually compile with specialized compiler

▶ Adds necessary instrumentation
▶ Sanitizers help by crashing when common security issues occur

▶ Increases chances that crashes correspond to vulnerabilities
▶ Still not guaranteed, hence manual triaging is always required
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Fuzzing
Binary-only Fuzzing
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Oh no, I “Lost” my Source Code

▶ Question: What if you “lost” access to your source code?3

3This happens constantly to US military agencies.
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Fuzzing the iPhone Boot Loader
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Motivation

▶ iPhone security major talking point in the press
▶ “Apple Issues Emergency Security Updates to Close a Spyware Flaw” [7]
▶ “iOS zero-day let SolarWinds hackers compromise fully updated iPhones” [3]
▶ “New iPhone ‘Zero Day’ Hack Has Existed For Months” [4]

▶ Boot loader very important for security guarantees
⇒ Vulnerabilities in the iPhone boot loader are highly sought after.

▶ Goal: Apply state-of-the-art fuzzing to iPhone boot loader
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Fuzzing the iPhone Boot Loader
Background
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iPhone Boot Sequence

▶ Boot loader responsible for initializing hardware and setting up everything for the
main OS to run

▶ Consists of multiple stages on iPhones
▶ Stages form a secure boot chain

▶ Every stage loads, verifies and runs next one
▶ Verification uses standard X.509 certificate chains, RSA signatures
▶ Every stage is stored in a custom format, called IMG4
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Schematic Boot Diagram

Device
Power On SecureROM iBoot

iBSS iBEC

Kernelcache

DFU Recovery/Upgrade

Schematic view of the iOS boot sequence and its boot loader stages adapted from [5].
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Fuzzing the iPhone Boot Loader
Threat Model
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Attacking the Secure Boot Chain

▶ Question: Why could attacking SecureROM be interesting?

▶ Exploit in SecureROM very powerful:
▶ Getting kernel code execution is trivial
▶ Can lead to larger attack surface for Secure Enclave Processor (SEP) [9]
▶ Cannot be patched
▶ Might lead to persistence

▶ Two major threat models:
▶ Physical access: Attacker can interface with USB DFU protocol
▶ Root on device: Attacker can write malformed IMG4 file to disk

▶ We assume the physical access threat model
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Schematic Threat Model
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Fuzzing the iPhone Boot Loader
Building a Fuzzable Binary
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Challenges

▶ Normally: Build from source with instrumentation

▶ Binary blob without symbols
▶ Designed for Apple processors
▶ Bare metal or bust
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Solution: Static Analysis

__int64 sub_100009BCC(char *a1)
{
sub_1000127BC();
if (a1 == aKsat || a1 == &unk_19C0107C0)
sub_100008F90();

if (*((_QWORD *)a1 + 3) || *((_QWORD *)a1 + 4))
sub_100009C50(a1 + 24);

sub_100009C50(a1 + 8);
v3 = sub_100001C14(a1);
sub_100012810(v3);
return sub_10000FEF4(a1);

}
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Solution: Static Analysis

void task_destroy(struct task *a1)
{
enter_critical_section();
if (a1 == &bootstrap_task || a1 == &idle_task)
panic();

if (a1->queue_node.prev || a1->queue_node.next)
list_delete(&a1->queue_node);

list_delete(&a1->task_list_node);
arch_task_destroy(a1);
exit_critical_section();
heap_free(a1);

}
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Solution: Binary Patching

// Convert PAC branch to normal branch
r.PatchInstruction("blraaz ").Patch(r.PatchTmpl("blr {{(index .Args 0)}}"))
// Force bzero to never use dca
symb.rom__bzero.PatchOffset(0x18).Patch(r.PatchASM("cmp x2, #0x40000"))
// Override USB driver with custom one
symb.rom_synopsys_otg_controller_init.PatchOffset(0).Patch(

r.PatchFunctionNoLink("emmutaler_controller_init")
)
// Patch in custom root certificate
certPath := filepath.Join(filepath.Dir(r.inputPath), "..", "certs", "root_ca.der")
certData, _ := os.ReadFile(certPath)
r.RawPatch(symb.rom_root_ca.Start, len(certData),

fmt.Sprintf(`.incbin "%s"`, certPath))
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Solution: SecureROM as a Library

▶ Main idea: Create normal Linux program calling into SecureROM as necessary.

▶ Can use existing fuzzers without modifications
▶ Functions interesting to fuzz do not need low-level access
▶ Can fuzz selectively
▶ Easy to debug without complicated fuzzing harness
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IMG4 Fuzzing
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IMG4 Schematic

SecureROM image_loadfuzz_meTarget

InputAFL++

Schematic view of the high-level fuzzing design for IMG4 parsing.
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Results

▶ Ran for one week
▶ No interesting crashes
▶ Interesting results with respect to

speed
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IMG4 Fuzzing
Fuzzing Speed
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Fuzzing Speed

▶ Problem: Fuzzing speed is much
lower than expected

▶ Multiple factors:

▶ Target restarted for every run
▶ PAC instructions are slow in software

▶ Solution: Patch QEMU to ignore PAC
▶ Solution: Use persistent mode for

better performance
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Persistent Mode
▶ AFL++ creates “fake” loop by going back to fuzzing function after exit
▶ Should provide great speedup

▶ Problem: Fuzzing is now actually slower
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IMG4 Fuzzing Speed Results
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USB Fuzzing
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USB Schematic

SecureROM

usb_core_handle_usb_control_receive

getDFUImage

Target

usb_main_thread

fuzz_me

InputAFL++

…

…

Schematic view of the high-level fuzzing design for USB messages.
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Short Refresher on the Heap

▶ Provides mechanism for dynamic memory allocation

▶ Used by most programs, but might not be directly visible
▶ void* ptr = malloc(100) : allocate 100 bytes

▶ Starting at ptr , 100 bytes of memory available for anything
▶ Usually called dynamically allocated buffer

▶ free(ptr) : release memory previously allocated to be used elsewhere
▶ ptr should not be used afterwards
▶ Needed, since memory management is manual
▶ Everything allocated must be freed by programmer
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checkm8

Use-After-Free (UAF)
A use-after-free occurs when a pointer to a buffer on the heap is used, after said buffer
has already been freed.

▶ Previously found vulnerability in DFU protocol titled “checkm8” [1]
▶ Core bug exploited: use-after-free (UAF) in DFU protocol handling
▶ Before this thesis, iPhone 4S to X were publicly known to exhibit the UAF bug [1].

▶ Goal: Our fuzzing finds the same UAF bug
▶ Shows that the fuzzing is successful, since it can find bugs
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The Quest for checkm8

▶ Problem: Fuzzer does not find any crashes
▶ Surprising at first

▶ Multiple possible reasons:

▶ Fuzzing does not work correctly
▶ Fuzzing the wrong parts
▶ Fuzzing finds the bug, but does not crash
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Heap Feng Shui

Heap Feng Shui [8]
The process of carefully manipulating the heap, allowing exploitation. It is also
sometimes called “heap grooming”. Usually, it consists of allocating and freeing very
specific sizes in a specific order to get the heap into a very specific state.

▶ checkm8 performs complicated “heap feng shui” before actual exploit
▶ Otherwise, exploited buffer is allocated at the same place
▶ Not exclusive to SecureROM

▶ Solution: Custom allocator tailored to find heap bugs that depend on specific
state
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USB Fuzzing
Fuzzing-Enabling Thread-safe Allocator (FETA)
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FETA Overview

▶ Drop-in replacement for any code using malloc and free
▶ Thread-safe
▶ Can detect and crash on:

▶ heap overflows, both read and write
▶ use-after-free, both read and write

▶ Basic idea:

▶ Want to crash as soon as bug happens
▶ Access to unmapped page causes immediate crash, for both read and write
▶ Solution: “isolate” every heap chunk to its own set of pages
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Example Allocations with FETA

Mapped Pages

Heap Chunk

Guard Page

Freed Pages

initialize_heap(0x20000); ⇐
void* chunk1 = malloc(0x100);
void* chunk2 = malloc(0x1000);
free(chunk2);

0x
20
00
0

curr_addr
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USB Fuzzing
Results
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Overall Results

▶ checkm8 could be found using FETA
▶ Time-to-exposure (TTE) very short
▶ Confirms that checkm8 still present on

iPhone 11

▶ Question: What other bugs are we
missing?

▶ Interesting future research
possibilities

▶ Expand FETA to also detect memory
leaks via fuzzing

▶ Threading library to expose race
conditions?
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Conclusion

Leonardo Galli October 15, 2021 57 / 64



Conclusion

▶ Fuzzing becoming more and more important

▶ Setup can be quite quick with modern tooling
▶ No more excuses

▶ Does not replace security engineers

▶ iPhone boot loader fuzzing was successful

▶ Confirmed existence of checkm8 on iPhone 11

▶ FETA performs great and raises interesting questions
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Useful Links

Fuzzing
▶ Fuzzing in Go 1.18: go.dev/blog/fuzz-beta
▶ AFL++ documentation: aflplus.plus
▶ Fuzzing-101: github.com/antonio-morales/Fuzzing101
▶ Awesome Fuzzing Discord: discord.gg/vmAGPuUUvn

Other
▶ Source code for iPhone boot loader fuzzing: github.com/galli-leo/emmutaler
▶ flagbot homepage: flagbot.ch
▶ These slides: flagbot.ch/material
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