
Lesson 1: Buffer Overflows
Getting your feet wet, by pwning your first binary.

Leonardo Galli

flagbot (CTF@VIS)

November 2, 2021

Table of Contents

Introduction

Intermezzo: Game Hacking

Intermezzo 2: Easy PicoCTF

Setting up the Environment

Buffer Overflow
The Stack
Overflow
ROP

Exercises

Further Readings

Introduction

Leonardo Galli November 2, 2021 3 / 35

Information

I Slides and additional material on our website flagbot.ch (under materials)

I Read the slides for Lesson 0, if you are new

I Subscribe to the mailinglist for receiving information: lists.vis.ethz.ch (CTF, not
CTF-announce)

Leonardo Galli November 2, 2021 4 / 35

https://flagbot.ch
https://lists.vis.ethz.ch/postorius/lists/ctf.lists.vis.ethz.ch/

Web Security Workshop

I Collaboration between FAUST, polygl0ts (EPFL) and flagbot

I Workshop aimed at beginners to jump start them on web challenges

I Takes place on 9th and 10th October

I Registration deadline on Thursday, 7th October at midnight

I More information and registration at flagbot.ch/events

Leonardo Galli November 2, 2021 5 / 35

https://flagbot.ch/events/

Disclaimer

Ethical Hacking

In these lessons you will gain firsthand experience with methods used to exploit all kinds
of systems. Our purpose is mostly to help you get better at solving CTF challenges, so
we strongly urge you to only practice ethical hacking.
We do not condone trying to gain access to any system you are not specifically
authorized to do so. If you do find any vulnerabilities in software, always report it
through the proper channels!

Leonardo Galli November 2, 2021 6 / 35

Disclaimer

Ethical Hacking

In these lessons you will gain firsthand experience with methods used to exploit all kinds
of systems. Our purpose is mostly to help you get better at solving CTF challenges, so
we strongly urge you to only practice ethical hacking.
We do not condone trying to gain access to any system you are not specifically
authorized to do so. If you do find any vulnerabilities in software, always report it
through the proper channels!

Leonardo Galli November 2, 2021 7 / 35

Intermezzo: Game Hacking

Leonardo Galli November 2, 2021 8 / 35

Showcase of Tasteless Shores

I Game challenges at this weekend’s CTF

I Uses godot engine

I Quick showcase, no in depth slides (yet)

I More resources found at the end of the slides

Leonardo Galli November 2, 2021 9 / 35

Intermezzo 2: Easy PicoCTF

Leonardo Galli November 2, 2021 10 / 35

Discussion

What challenges did you try?

Leonardo Galli November 2, 2021 11 / 35

Setting up the Environment

Leonardo Galli November 2, 2021 12 / 35

How to not Infect Yourself

I Most of the time, challenges are geared towards Linux

I Thus, you will probably need to setup a virtual machine
I Even if you run linux natively, setting up a vritual machine has a lot of benefits:

I No risk when running random binaries on your computer
I Tooling is setup and ready to go immediately
I If you fuck something up, just run vagrant destroy && vagrant up and you

are good to go
I Different VMs for different libc versions

Kali et al.

We strongly advise against using distros built for ”hacking”. While the tools they
provide by default can be nice in some scenarios, CTFs often require quite different tools
and challenges often work best on standard distributions such as ubuntu.

Leonardo Galli November 2, 2021 13 / 35

How to not Infect Yourself

I Most of the time, challenges are geared towards Linux

I Thus, you will probably need to setup a virtual machine
I Even if you run linux natively, setting up a vritual machine has a lot of benefits:

I No risk when running random binaries on your computer
I Tooling is setup and ready to go immediately
I If you fuck something up, just run vagrant destroy && vagrant up and you

are good to go
I Different VMs for different libc versions

Kali et al.

We strongly advise against using distros built for ”hacking”. While the tools they
provide by default can be nice in some scenarios, CTFs often require quite different tools
and challenges often work best on standard distributions such as ubuntu.

Leonardo Galli November 2, 2021 13 / 35

Making your Life Easy

I We have prepared tooling for you to setup a VM that is geared towards CTFs

I For detailed config instructions, read the config.rb file found once you download the
repo

I Start downloading and setting everything up now, so that you can participate in the
challenge later :)

Leonardo Galli November 2, 2021 14 / 35

Instructions For Now

1. Download and Install VirtualBox (Click on your OS here)

2. Download and Install Vagrant (here)

3. Clone our git repository from here:
git clone https://gitlab.ethz.ch/vis/ctf/ctf-vm.git

4. Change config.rb to your liking (most likely you only need to change your shared
folders and the ssh key)

5. Run vagrant up 27 to start the download and installation of the VM.

:shared_folders => {

"/path/to/my/projects" => "/home/vagrant/CTF"

},

...

:ssh_key => "/path/to/my/user/.ssh/id_rsa.pub",

Leonardo Galli November 2, 2021 15 / 35

https://www.virtualbox.org/wiki/Download_Old_Builds_6_0
https://www.vagrantup.com/downloads.html
https://gitlab.ethz.ch/vis/ctf/ctf-vm

Buffer Overflow

Leonardo Galli November 2, 2021 16 / 35

Buffer Overflow
The Stack

Leonardo Galli November 2, 2021 17 / 35

The Stack

I Before we can start overflowing buffers, we need to learn about ”the stack” (AKA
the call stack)

I stack data structure, that stores information about the active functions (or
subroutines) of a computer program

I Every function has a so called ”stack frame” - on the stack - where information is
stored, such as
I local variables (numbers, strings, arrays)
I saved instruction pointer - the return address (used to know where to return back to,

when the function is done)
I additional arguments (not really relevant yet)

I Local variables allocated in the stack go from low to high addresses, i.e. we may
find the first character of "Hello World" at 0x7fa0, while the last character
would be at 0x7fab

I However, the stack grows downwards, i.e. if we push items a, b on the stack (in
that order), we may find a at 0x7698, while b would be at 0x7690

Leonardo Galli November 2, 2021 18 / 35

Example

int callme() {

char name[16];

gets(name);

printf("Hello %s", name);

return 2;

}

int main(int argc, char* argv[]) {

long x = 4; ⇐
long y = callme();

printf("x + y = %d", x + y);

return 0;

}

...

0xZZZZZZZZ
y
0x7fd0

0xZZZZZZZZ
x
0x7fc8

main

stack frame

0xZZZZZZZZ
saved %rbp

0x7fc0

0xZZZZZZZZ
saved %rip

0x7fb8

name[8:15]

0x7fb0
n[8]. . .n[15]

name[0:7]

0x7fa8
n[0]. . .n[7]

callme

stack frame

stack
grow

th

...

Figure: The Stack

Leonardo Galli November 2, 2021 19 / 35

Example

int callme() {

char name[16];

gets(name);

printf("Hello %s", name);

return 2;

}

int main(int argc, char* argv[]) {

long x = 4;

long y = callme(); ⇐
printf("x + y = %d", x + y);

return 0;

}

...

0xZZZZZZZZ
y
0x7fd0

4
x
0x7fc8

main

stack frame

0xZZZZZZZZ
saved %rbp

0x7fc0

0xZZZZZZZZ
saved %rip

0x7fb8

name[8:15]

0x7fb0
n[8]. . .n[15]

name[0:7]

0x7fa8
n[0]. . .n[7]

callme

stack frame

stack
grow

th

...

Figure: The Stack

Leonardo Galli November 2, 2021 19 / 35

Example

int callme() {

char name[16];

gets(name); ⇐
printf("Hello %s", name);

return 2;

}

int main(int argc, char* argv[]) {

long x = 4;

long y = callme();

printf("x + y = %d", x + y);

return 0;

}

...

0xZZZZZZZZ
y
0x7fd0

4
x
0x7fc8

main

stack frame

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

name[8:15]

0x7fb0
n[8]. . .n[15]

name[0:7]

0x7fa8
n[0]. . .n[7]

callme

stack frame

stack
grow

th

...

Figure: The Stack

Leonardo Galli November 2, 2021 19 / 35

Example

int callme() {

char name[16];

gets(name);

printf("Hello %s", name); ⇐
return 2;

}

int main(int argc, char* argv[]) {

long x = 4;

long y = callme();

printf("x + y = %d", x + y);

return 0;

}

...

0xZZZZZZZZ
y
0x7fd0

4
x
0x7fc8

main

stack frame

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

name[8:15]

0x7fb0
'\0'. . .'\0'

name[0:7]

0x7fa8
'L'. . .'o'

callme

stack frame

stack
grow

th

...

Figure: The Stack

Leonardo Galli November 2, 2021 19 / 35

Example

int callme() {

char name[16];

gets(name);

printf("Hello %s", name);

return 2; ⇐
}

int main(int argc, char* argv[]) {

long x = 4;

long y = callme();

printf("x + y = %d", x + y);

return 0;

}

...

0xZZZZZZZZ
y
0x7fd0

4
x
0x7fc8

main

stack frame

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

name[8:15]

0x7fb0
'\0'. . .'\0'

name[0:7]

0x7fa8
'L'. . .'o'

callme

stack frame

stack
grow

th

...

Figure: The Stack

Leonardo Galli November 2, 2021 19 / 35

Example

int callme() {

char name[16];

gets(name);

printf("Hello %s", name);

return 2;

}

int main(int argc, char* argv[]) {

long x = 4;

long y = callme();

printf("x + y = %d", x + y); ⇐
return 0;

}

...

2
y
0x7fd0

4
x
0x7fc8

main

stack frame

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

name[8:15]

0x7fb0
'\0'. . .'\0'

name[0:7]

0x7fa8
'L'. . .'o'

callme

stack frame

stack
grow

th

...

Figure: The Stack

Leonardo Galli November 2, 2021 19 / 35

Example

int callme() {

char name[16];

gets(name);

printf("Hello %s", name);

return 2;

}

int main(int argc, char* argv[]) {

long x = 4;

long y = callme();

printf("x + y = %d", x + y);

return 0; ⇐
}

...

2
y
0x7fd0

4
x
0x7fc8

main

stack frame

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

name[8:15]

0x7fb0
'\0'. . .'\0'

name[0:7]

0x7fa8
'L'. . .'o'

callme

stack frame

stack
grow

th

...

Figure: The Stack

Leonardo Galli November 2, 2021 19 / 35

Buffer Overflow
Overflow

Leonardo Galli November 2, 2021 20 / 35

C is hard

I C is a very low level language
I Basically no checks in place!

I No type checks, no checks on array sizes, etc.!

I At every step the programmer needs to make sure, user input is correct

Leonardo Galli November 2, 2021 21 / 35

Programming Mistakes

I Common mistakes are using functions that do not check sizes of strings, arrays, etc.

I Examples are: gets, strcpy, sprintf, strcat, ...

I If you see them used in a program, immediately assume there is an attack vector
here

I How can we exploit this?

Exploit?

Almost always, the ”holy grail” is getting code execution when trying to exploit the
attack vector. Because these programs are either run on a server or - more general - a
remote computer, this allows us to execute code on it.
However, often this might entail using multiple different attack vectors. Furthermore,
sometimes reading arbitrary memory can already be enough.

Leonardo Galli November 2, 2021 22 / 35

Buffer Overflow
ROP

Leonardo Galli November 2, 2021 23 / 35

Getting Code Execution

I If the programmer fails to check the length of our input, we can overwrite stuff on
the stack

I What of interest is stored on the stack?

I If we overwrite the saved instruction pointer, we can control where the function
returns to

I We have effectively gained code execution!

I Let’s give the example program 32 characters of A (0x41 in hex)

Leonardo Galli November 2, 2021 24 / 35

Getting Code Execution

I If the programmer fails to check the length of our input, we can overwrite stuff on
the stack

I What of interest is stored on the stack?

I If we overwrite the saved instruction pointer, we can control where the function
returns to

I We have effectively gained code execution!

I Let’s give the example program 32 characters of A (0x41 in hex)

Leonardo Galli November 2, 2021 24 / 35

Example 2.0: Smashing the Stack for Fun and Profit

int callme() {

char name[16];

gets(name); ⇐
printf("Hello %s", name);

return 2;

}

int main(int argc, char* argv[]) {

long x = 4;

long y = callme();

printf("x + y = %d", x + y);

return 0;

}

...

2
y
0x7fd0

0xZZZZZZZZ
x
0x7fc8

main

stack frame

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

name[8:15]

0x7fb0
n[8]. . .n[15]

name[0:7]

0x7fa8
n[0]. . .n[7]

callme

stack frame

stack
grow

th

...

Figure: The Stack: Smashed

Leonardo Galli November 2, 2021 25 / 35

Example 2.0: Smashing the Stack for Fun and Profit

int callme() {

char name[16];

gets(name);

printf("Hello %s", name); ⇐
return 2;

}

int main(int argc, char* argv[]) {

long x = 4;

long y = callme();

printf("x + y = %d", x + y);

return 0;

}

...

2
y
0x7fd0

0xZZZZZZZZ
x
0x7fc8

main

stack frame

0x4141414141414141
saved %rbp

0x7fc0

0x4141414141414141
saved %rip

0x7fb8

name[8:15]

0x7fb0
'A'. . .'A'

name[0:7]

0x7fa8
'A'. . .'A'

callme

stack frame

stack
grow

th

...

Figure: The Stack: Smashed

Leonardo Galli November 2, 2021 25 / 35

Example 2.0: Smashing the Stack for Fun and Profit

int callme() {

char name[16];

gets(name);

printf("Hello %s", name);

return 2; ⇐
}

int main(int argc, char* argv[]) {

long x = 4;

long y = callme();

printf("x + y = %d", x + y);

return 0;

}

...

2
y
0x7fd0

0xZZZZZZZZ
x
0x7fc8

main

stack frame

0x4141414141414141
saved %rbp

0x7fc0

0x4141414141414141
saved %rip

0x7fb8

name[8:15]

0x7fb0
'A'. . .'A'

name[0:7]

0x7fa8
'A'. . .'A'

callme

stack frame

stack
grow

th

...

Figure: The Stack: Smashed

Leonardo Galli November 2, 2021 25 / 35

Example 2.0: Smashing the Stack for Fun and Profit

I What happens now?

Segmentation Fault

Program received signal SIGSEGV, Segmentation fault.

If we would look at the program in a debugger, we would see that it tried executing code
at address 0x4141414141414141! Mission accomplished!

Leonardo Galli November 2, 2021 26 / 35

Example 2.0: Smashing the Stack for Fun and Profit

I What happens now?

Segmentation Fault

Program received signal SIGSEGV, Segmentation fault.

If we would look at the program in a debugger, we would see that it tried executing code
at address 0x4141414141414141! Mission accomplished!

Leonardo Galli November 2, 2021 26 / 35

Return Oriented Programming

I While this is already cool, we need to have a useful location to jump to, otherwise
this alone is useless

I Enter Return Oriented Programming (ROP)
I By finding small snippets of useful assembly code in the binary (or others loaded by

it), that we can chain together (ROP chain), to achieve a goal
I useful usually means: does something we want (e.g. setting a register to a certain

value, setting register value from stack, etc.) and also contains another return
instruction!

I Otherwise, we could not continue our chain!
I Goal is usually to call system("/bin/sh") , which gives us a remote terminal

I Achieved by setting the registers %rdi = address of string "/bin/sh" , %rsi = 0,

%rdx = 0, then jumping to address of system

Leonardo Galli November 2, 2021 27 / 35

Finding Gadgets and Addresses

I For now you can use objdump -d program to get assembly and location for

the functions

I Looking through the different functions you can find gadgets by hand

I Often the values you want to have on the stack are not nice characters (for
example 0x80)

I Use echo -ne '\x80\x40\x00\x7f' | ./program to pass 0x7f004080 to

the program

Leonardo Galli November 2, 2021 28 / 35

Exercises

Leonardo Galli November 2, 2021 29 / 35

PicoCTF

I clutter-overflow
I Easy buffer overflow
I No need for ROP

I Guessing Game 1
I A lot harder
I Needs ROP
I Might want to hold off on this for now :)

Leonardo Galli November 2, 2021 30 / 35

flagbot Challenge

babybof

This is a simple buffer overflow challenge. Both binary and source code are provided on
our website under materials. Once you have a working exploit, you can run it against the
server.
There are two flags for this challenge, one is easier to get, while the other is in a file
called flag2. First one to claim a flag, gets the right to present their exploit ;)
Hints: For flag1 you just need to ”call” the win function. For flag2 you need to get a
shell.
Files: babybof.zip
Server: spclr.ch 1337

Author: Robin Jadoul

Leonardo Galli November 2, 2021 31 / 35

https://flagbot.ch/babybof.zip

Further Readings

Leonardo Galli November 2, 2021 32 / 35

Game Hacking

I Pwn Adventure 3: Pwnie Island Walkthrough by Live Overflow on YouTube

I CheatEngine: useful tool for memory editing

I ILSpy: .NET decompiler, useful for C# based games, e.g. Unity

I gdsdecomp: Godot reverse engineering tools

I BasteG0d69 on YouTube: Diverse hacking videos, sometimes game related :)

Leonardo Galli November 2, 2021 33 / 35

https://www.youtube.com/watch?v=RDZnlcnmPUA&list=PLhixgUqwRTjzzBeFSHXrw9DnQtssdAwgG
https://www.cheatengine.org
https://github.com/icsharpcode/ILSpy
https://github.com/bruvzg/gdsdecomp
https://www.youtube.com/channel/UCmYAXMxue6UdEPfAPxA0E8w

Assembly, Disassemblers and Decompilers

I x86 Assembly
I ”Machine Language” of modern Intel/AMD processors and so most binary challenges

use it
I x86 Assembly Guide
I CS:APP Chapter 3: Machine-Level Representation of Programs

I Disassemblers
I Take a binary and display the x86 assembly nicely, cross reference stuff, etc.
I objdump -D binary is the simplest version

I Cutter (powered by radare2)

I Decompilers
I Take the output of a dissassembler and try to create C code that does the same thing

as the assembly
I Usually Programms do both
I Ghidra is pretty good and available for free at ghidra-sre.org
I Introduction to Ghidra

Leonardo Galli November 2, 2021 34 / 35

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://gec.di.uminho.pt/DISCIP/MaisAC/CS-APP_Bryant/csapp.preview3.pdf
https://cutter.re
https://ghidra-sre.org
https://ghidra.re/courses/GhidraClass/Beginner/Introduction_to_Ghidra_Student_Guide.html

Advanced ROP Techniques and Protection Measures

I ROPing all the things!
I ROP on a voting machine
I ROP on an Adobe Reader PDF

I Must-have tools for ROP:
I ROPgadget
I ropper

I Cool ROP Techniques:
I (basic) ret2libc
I (hard) sigreturn oriented programming

I Defending against ROPs:
I ASLR
I G-free
I PAC: Pointer Authenication (use crypto to secure return pointers)

Leonardo Galli November 2, 2021 35 / 35

https://www.sciencedaily.com/releases/2009/08/090810161902.htm
https://www.fireeye.com/blog/threat-research/2013/02/the-number-of-the-beast.html
http://shell-storm.org/project/ROPgadget/
https://scoding.de/ropper/
https://en.wikipedia.org/wiki/Return-to-libc_attack
https://en.wikipedia.org/wiki/Sigreturn-oriented_programming
https://en.wikipedia.org/wiki/Address_space_layout_randomization
http://s3.eurecom.fr/docs/acsac10_gfree.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

	Introduction
	Intermezzo: Game Hacking
	Intermezzo 2: Easy PicoCTF
	Setting up the Environment
	Buffer Overflow
	The Stack
	Overflow
	ROP

	Exercises
	Further Readings

