How does Zoom Store Recordings?

Reverse Engineering C+-+ and Custom File Formats

Leonardo Galli

flagbot (CTF@VIS)

October 8, 2020

Flag aot

About Me

» Finishing my Bachelor of Computer Science at ETH
» Member of flagbot since over two years

» President of flagbot since over a year

Leonardo Galli
leonardo.galli@vis.ethz.ch

aya

Leonardo Galli How does Zoom Store Recordings? — October 8, 2020 2 /48

mailto:leonardo.galli@vis.ethz.ch

About flagbot

» VIS committee and ETH'’s Capture the Flag team
CTFs are team-based cybersecurity competitions,

often involving real-world attacks L

» Ranked 1%t place in Switzerland in 2019 and 2020! ll'. ﬁ

» Most recent: 5t place in OCTF (Tencent) Finals II|
Teamed up with polyglOts (EPFL), the crOwn?, n
excusemewtf? and secret club

» Playing CTFs on weekends ‘

» Weekly meetings on Monday at 19:00 over Zoom, Contact: ctf@vis.ethz.ch

open to anyone More Information: flagbot.ch

Discussion of challenges and lectures aimed at
beginners (recordings available on
flagbot.ch/material)

! According to ctftime.org

21%t_placed UK team
Leonardo Galli How does Zoom Store Recordings? — October 8, 2020 3 /48

aya

https://flagbot.ch/material
mailto:ctf@vis.ethz.ch
https://flagbot.ch
https://ctftime.org/team/34878

Introduction

Leonardo Galli How does Zoom Store Recordings? — Introduction October 8, 2020 4 /48

Premise

l’iﬂ

| 2

>
>
>
>

Leonar

At the beginning of the year, needed to shift from in-person meetings to online
Wanted to record lectures for uploading to our website
Audio mixing was a big problem

Zoom allows you to export every person as a separate audio file
Unfortunately, they remove any periods of silence longer than a few seconds
Nightmare to try and synchronize

e |

im i}\\mm i

H‘ll

* Wﬂ»{%%‘ MM,

W\M umn n|"

Figure: Top: audio as output by Zoom, bottom: audio as extracted by me.

do Galli How does Zoom Store Recordings? — Introduction October 8, 2020

5 /48

ldea

» Zoom stores recordings in temporary files

These are called double_click_to_convert_0{1,2,3}.zoom

» Goal: Figure out how recordings are stored in those files
Extract higher-quality video recordings

» Approach: Reverse-engineer Zoom's transcoder app and accompanying libraries

» Side effects: Learn more about Zoom's software architecture and the H.264
standard

aya

Leonardo Galli How does Zoom Store Recordings? — Introduction October 8, 2020

6/ 48

Table of Contents

Introduction
Reversing Tactics
C++ Instance Methods and VTables

Reverse Engineering Process
Initial Reconnaissance
Example: Reversing the File Header
Further Investigation

Findings
Recording Files
Other Interesting Bits

)

Leonardo Galli

Introduction
Reversing Tactics

How does Zoom Store Recordings? — Introduction

October 8, 2020

8 /48

Static vs. Dynamic Analysis

» Two major approaches to reversing
» Usually want to use a combination of both

» Not just for reversing compiled applications, but also most other code
Can be applied to JavaScript, Python, etc.

Y1)

Leonardo Galli How does Zoom Store Recordings? — Introduction October 8, 2020 9 /48

Static Analysis

» Look at application through a decompiler / disassembler

disassembler: Tool for analyzing the machine code of an application
decompiler: Tool for converting disassembly to high-level source code
Popular free tools: Ghidra, radare2 (+ Cutter), IDA freeware

Similar tools exist for non-compiled languages

» Figure out types, function signatures, purpose and more
» Can quickly get complicated
» Analyze supporting files with other tools and try to figure out their purpose

binwalk to extract possible files in a larger collection
Often, custom file formats are identifiable in just a hex viewer

aya

Leonardo Galli How does Zoom Store Recordings? — Introduction October 8, 2020

10 / 48

Dynamic Analysis

» Try to gain insight into the application by analyzing it at runtime

» Attach a debugger and step through functions, analyzing memory contents
Often, static tools can also do dynamic analysis

» Inject code and hook functions
Can be easier than scripting a debugger

\4

Symbolically execute parts of the application (or even the whole thing)3
» Often underused, even though it can be a lot faster
Especially helpful with C++ VTables

3angr.io is a popular tool for this.

Leonardo Galli How does Zoom Store Recordings? — Introduction October 8, 2020

aya

11/ 48

http://angr.io

Leonardo Galli

Introduction
C+-+ Instance Methods and VTables

How does Zoom Store Recordings? — Introduction

October 8, 2020

12 / 48

Example Classes

class Animal {
void eat();
virtual bool tryPet();

#include "animal.h"

g
. . class Dog : public Animal {
IOId Hemieil S0 bool tryPet() override;
// Something useful ¥
¥ bool Dog: :tryPet()
bool Animal::tryPet () i
c return true;
// not all animals can be pet b
return false;
+
b
? Leonardo Galli How does Zoom Store Recordings? — Introduction October 8, 2020

13 / 48

Instance Methods in C++

aya

void Animal::eat(Animalx*)
{

}

Dog* dog = Dog();

Animal: :eat ((Animal*)dog) ;

» Compiler just adds the parameter
» Function calls work normally (just like they would in C)

> Not a big impact on reversing

Leonardo Galli How does Zoom Store Recordings? — Introduction

October 8, 2020

14 / 48

Virtual Instance Methods in C4++

Y1)

void petOrError(Animal* animal)

{
(lanimal->tryPet ()) {
printf("Failed to pet animal!");

» Above code causes a problem for a naive compiler

» How to know which implementation of tryPet to call?

» Use virtual function tables (vtables) for dynamic dispatch

Leonardo Galli How does Zoom Store Recordings? — Introduction October 8, 2020

15 / 48

vtables

Animal {
Animal_vtablex vtable;

Animal_vtable {

bool (*tryPet) (Animalx*)8
s
Animal* dog = (Animalx) Dog() ;

dog->vtable->tryPet (dog) ;

> Store information about location of virtual functions on object itself

» Much harder to reverse engineer

October 8, 2020 16 / 48

aya

Leonardo Galli How does Zoom Store Recordings? — Introduction

)

Leonardo Galli

Reverse Engineering Process

How does Zoom Store Recordings? — Reverse Engineering Process

October 8, 2020

17 / 48

O

v

Combined both dynamic and static analysis

v

Used decompiler and hex viewer most frequently
P Reconstructed many class hierarchies in the decompiler
Used debugger to figure out relevant classes and functions

v

Verified findings with python scripts, debugger and binary hooking

» Sometimes, educated guesses were enough

aya

Leonardo Galli How does Zoom Store Recordings? — Reverse Engineering Process October 8, 2020 18 / 48

Leonardo Galli

Reverse Engineering Process
Initial Reconnaissance

How does Zoom Store Recordings? — Reverse Engineering Process

October 8, 2020

19 / 48

Finding a Starting Point

» Suspiciously small main application (Transcode.app)

» Unable to find filenames, but found interesting logging statements at least

> Static analysis revealed that actual work is quickly delegated to mcm.bundle
mcm library is very opaque: almost no exports, imports or symbols*

Address

B _cstring:00...
B _cstring:00...
B _cstring:00...
B __cstring:00...
B _cstring:00...
B _cstring:00...
B8 __cstring:00...

Length
0000000F
0000000D
0000001F
00000034
0000003A
00000033
00000040

B okves

l‘)l“)l“)l‘)l“)l“)l‘)s‘
®

String

SSB_UNINIT_MCM

SSB_INIT_MCM

Contents/Frameworks/mem.bundle
TranscodeMgr::StartTranscoding, path=%s, length=%d\n
TranscodeMgr::StartTranscoding, m_pTranscodeObject is nil
TranscodeMgr::StopTranscoding, path=%s, length=%d\n
TranscodeMgr::GetTranscodeFilelnfo, filePath:%s, pathlength:%d\n

Figure: No sight of the filenames, but interesting strings nonetheless.

e *think (function) names

3 Leonardo Galli

How does Zoom Store Recordings? — Reverse Engineering Process October 8, 2020

20/ 48

Dynamic Analysis to the Rescue

» Start Transcode.app

under a debugger and pause in the middle

Hopefully, call stack will hint to where we want to start investigating
> At first, call stack looked useless, but after switching to different threads | spotted
an interesting call stack
Contains functions referencing files as well as video decoding

Address

Z 00007FFF73D1D882
ZE 0000000115817E0A
ZE 0000000115818308
E 00000001159489C2
ZE 0000000115948645
Z 0000000110EDA30D
FE 0000000110EE405D
ZE 0000000110EE22CE
ZE 0000000110ED0158
2 0000000110ECFEBS
Z 0000000110EC201D
ZE 0000000110ECD478
ZE 0000000110ECC15A
Z 0000000110EEDO9F
Z 00007FFF73DDE103
Z 00007FFF73DD9B86

Leonardo Galli

Module Function
libsystem_kernel... __psynch_cvwait+A
zlt 0000000116817E0A
zIt 0000000115818308
zlt _DestroyGltinterface+A36B6
zlt _DestroyGltinterface+A3333
zmb i VideoDec::GetOr &int,int)+75
zmb MultiC| onvertOpt2::DeliveA: i &,zMedi Multi.
zmb MultiCl onvertOpt2::| Output(: ple &)+674
zmb. VideoTr i i if *)+4B8
zmb 8)+EB
zmb or ify(int,void *)+31
zmb FileSource2Mc::NeedFor _rt_info_ext_t & rt.info_...
zmb zMediaBox::zmbCFileSource2Mc::run(void) +714
zmb zMediaBox::runable._t:routine(void *)+15
libsystem_pthre... __pthread_start+8E
libsystem_pthre... _thread_start+A
Figure: Interesting call stack of one thread.
How does Zoom Store Recordings? — Reverse Engineering Process October 8, 2020

21 /48

Opening the zmb Framework

» Although it looked promising under the debugger, there could be complications

» Most functions fully retained their names alongside argument types®

» Heavy use of C++ throughout the binary

» Looked for the filenames in the strings of the binary and started reversing from there

Address

. __cstring:00...
B _cstring:00...
B __cstring:00...
B __cstring:00...
B __cstring:00...
B __cstring:00...

Length

00000018
00000018
00000018
0000000F
0000000C
00000009

E oavews

oonnong
o

String
double_click_to_convert_01
double_click_to_convert_02
double_click_to_convert_03
audio_only.m4a
audio_only_

chat.srt

Figure: Finally, we found the filenames.

3
- Leonardo Galli

3 ®The types themselves were lost, though.

How does Zoom Store Recordings? — Reverse Engineering Process October 8, 2020

22 /48

Leonardo Galli

Reverse Engineering Process
Example: Reversing the File Header

How does Zoom Store Recordings? — Reverse Engineering Process

October 8, 2020

23 /48

Initial Decompiled Function

int64 _ fastcall zMediaBox::io_read mgr_t::io_read mgr_ t(zMediaBox::io read mgr_t ':hIa, int *a2, const char *a3)
// [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

*((_DWORD *)this + 16) = 0;

#((_DWORD *)this + 16) = ((unsignud __int16)zMediaBox: :thread_tool_t::thread mutex _create(
(pthread_mutex_t *)this,
(_opaque_pthread mutex_t t *)a2) & OXFFFCu) < 0x64;

*((_DWORD *)this + 24) = 0;

*((_QWORD *)this + 11) = OLL;

#((ZQWORD *)this + 10) = DLL;

*((COWORD *)this + 9) = OLL

*(_QWORD *)((char *)this + 100) = 0XFFFFFFFFO0000000LL;

vd = operator mew(0x30uLL);

result = zMediaBox::io64_ :und t::i064_read t((zMediaBox::io64_read t *)vd, a3);

((qwmu) *)this + 9) =

Af [1%(_DWORD *)(vd + 40) || 1%(_QWORD *)(v4 + B))

{
*a2 = 47513717;
return result;

w2l = 0x400000DC601L:

28 = OLL;

w27 = 0LL;

v26 = OLL;

v25 = OLL;

w24 = QOLL;

w23 = QOLL;

v22 = OLL;

v17 = 0xB4AD52E22C05F158LL;
w20 = QOLL;

v1ig = DL[.‘

viE =

V6 = :)l.ndLnBux: :io64_read_t::read((zMediaBox::io64 _read t *)v4, (unsigned _ int8 *)&v17, O0x60ulL);
*a2 = v6;

result = (unsigned _ intl6)vé & OXFFFC;
if ({ (unsigned int)result > 0x63)
return result;
vE8 = v17 == 0x84AD52E22C05F158LL;
v29 = (_ intéd)this + 100;
zMediaBox: :version_mgr_ t:2met(
(char *)this + 100,
(unsigned int)vzl,

vi,
(unsigned int)vl7 * 0x2CO5F158 | HIDWORD(v17) * OxB4ADSZE2)j

Leonardo Galli How does Zoom Store Recordings? — Reverse Engineering Process October 8, 2020

24 / 48

Decompiled Function after Cleanup and Annotation

|_dnt64 _ fastcall zMediaBox:i:io_read mgr_tiiio read mgr t(lo read mgr *this, _opaque pthread mutex t *aZ, const char *filename)
// [QDLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-'"+" TO EXPAND]

*(_DWORD *)&this->is good = 0;

*(_DWORD ']H‘.ni{l-)is gond = (lu!lsxg!\ld __int16)zMediaBox: :thread tool_t::thread mutex_create(&this->mutex, a2) & OXFFFCu) < 0x64;
*(TDWORD *)&this
this->size_of file = 0L
¢| this->start of data offset = OLL;

this->io64_cem = OLL

this->version_info = (vIrlio info)0XFFFFFFFF00000000LL
io_read = (zMediaBox::iof4_read_t *)operator new(48LL)
result = (_ int64)zMediaBox::io64 3 == enun e R =
this->i064_com = (zMediaBox::io64_com t *)i :
if (lio_read->file_state || lio_r« ld—)iile {d)

RD(a2->__sig) = 0x2D5007
return result;

(_QWORD *)&header_data[32]
*)&header data[88]
+)&header data[80]

= 0x400000DC601LL;// version
= o0LL;
*)sheader_data[72] = OLL}

»

i

*)&header_data[64]
*)&header_data[56]
*)&header_data[48]
*)&header_data[40]
*)header_data = nxsums:nucnsnsem.-
*)gheader_data[24] = OLL;
*)header data[16] = OLL;
*)sheader data(8] = OLL
1| v aMediaBox: rio6a xu.d tnrlld(ip read, (unsigned _ int8 *)header_data, 96ull);// read header
LODWORD (a2->__sig) =
result = (unsigned _1n:16]v5 & OXFFFC;
if ((unsigned int)Tesult > 0x63)

return resu
V7 = *(_QWORD *)header_data == OxXB4ADS2E22COSF158LL;
al = sthis->version_info;

zMediaBox: :version mgr_t: uaeuehls-wnamn info, *(unsigned int *)sheader data[3Z]);

v8 = this->version_info.number

if (v8 <0)

»
[

*

1{
*(_DWORD *)&this->version good = 0;

else

vy

Leonardo Galli How does Zoom Store Recordings? — Reverse Engineering Process October 8, 2020

25 / 48

Relevant Parts of Function

zMediaBox::io_read_mgr_t::io_read_mgr_t(io_read_mgr * s)

char header_datal[96];

memset (header_data, 0, 96);

*(_QWORD *)&header_datal[32] = 0x400000DC601LL;
*(_QWORD *)header_data = 0x84AD52E22CO5F158LL;

zMediaBox: :i064_read_t::read(io_read, header_data, 96ulLl);
zMediaBox: :version_mgr_t::set(& ->version_info,
*(unsigned int *)&header_datal[32]);

(*(_QWORD *)header_data !'= 0x84AD52E22CO5F158LL) =il g
->data_start = *(int *)&header_data[36];
zMediaBox: :i064_com_t: : seek(->io64, ->data_start, 0);

\=
3 Leonardo Galli How does Zoom Store Recordings? — Reverse Engineering Process October 8, 2020

26 / 48

Leonardo Galli

Reverse Engineering Process
Further Investigation

How does Zoom Store Recordings? — Reverse Engineering Process

October 8, 2020

27 / 48

File Format

» Starting from the previous function, slowly restored class hierarchies and found
locations where file contents are used
> Quickly located functions relevant to parsing the files
Only used for very basic parsing: splits file into packets
General pattern would have also been easily spotted with a hex viewer
> By reversing even more of the class hierarchies, certain fields of the packets became
apparent
> Allowed me to differentiate between different types of packets and dump their data
contents

aya

Leonardo Galli How does Zoom Store Recordings? — Reverse Engineering Process October 8, 2020 28 / 48

Audio Format

» Finally able to dump audio information
What format is used to store the audio, though?

> Concatenated all audio data and loaded it into Audacity (8-bit PCM, Stereo):
Initial Result

Left side is actually somewhat understandable
» Inspecting Transcode.app 's output reveals mono audio with a 32 kHz sample
rate

Sounds worse than before!
However, the length is exactly double that of the transcoding result

» Loading it again with 16-bit PCM, Mono, yields: Correct Output

aya

Leonardo Galli How does Zoom Store Recordings? — Reverse Engineering Process October 8, 2020 29 / 48

Matching Audio to Names

» Every audio sample has an attached name identifier: a simple integer
> Spent a lot of time reversing data structures (such as maps) to figure out where the

mapping from number to name is

» Running the second file through a hex viewer immediately reveals where it comes

from:

Follows the same general packet-oriented structure as the other files
Contains names in plain text in packets with corresponding numbers

000002d0:
0000020
0000020
00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
00000380
00000390
00000300
00000300 :

Figure: Hexdump of a test recording

- Leonardo Galli How does Zoom Store Recordings? — Reverse Engineering Process

58f1 052c 4000 0000 0800 0000 0000 0000 X..,@...........

0000 0000 0004 0001 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000 .
0000 0000 0000 0610 0000 0000 0e00 0000 .
0100 0000 4c65 6f6e 6172 646f 2047 616C .

6c69 €252 ad84 58f1 052c 4000 0000 0300

0000 0000 0000 0000 0000 0000 0000 0000 ...
0000 0000 0000 0000 0000 0000 0000 0000 ...
0000 700d 0000 A0S 0000 0000 0210 0000 ..
0000 0000 0000 0000 0000 e252 add4 58f1 ...
052c 4000 0000 0800 0000 VP00 0000 2000 .
0000 0304 0001 0000 0000 7c8b e301 0000 ...
0000 0000 0000 0000 0000 VP00 0000 0000 .
0000 0000 0110 0000 0000 0000 0000 0000 .

0000 €252 ad84

October 8, 2020

30/ 48

What About Video?

» Proved to be quite a bit of a challenge
» Looking at only video data in a hex viewer suggested some form of H.264 encoding

Network Abstraction Layer Unit® start code prefixes (0x00 0x00 0x00 0x01) are
plenty

» Running the video data through ffmpeg resulted in nothing useful:

Initial Result

i ®NALUs abstract the underlying storage of bits in a “network-friendly” manner
Leonardo Galli How does Zoom Store Recordings? — Reverse Engineering Process October 8, 2020 31/48

3

zlt Framework
» Video decoding implemented

in zlt framework

» Full of virtual method calls and over 400 classes
» Almost no symbols, exports or imports

» Preliminary dynamic analysis

did not reveal anything obvious

offset|Size| struct sc_cabac_decoder

0000{0008,
0008|0008,
0010|0008
0018|0004
001C| 0004
0020{0004
0024]0004
0028|0008
0030|0008
0038|0008
0040|0008,
0048|0008,
0050|0004
0054|0004
0058 };

Vtable_sc_cabac_decoder *__vftable;
_BYTE gap_8([%];
CDecBitstream2 *bitstream;
int field 18;

int codIRange;

int codIOffset;

int stuff3;

__int64 field 28;

~—_int64 field 30;

_BYTE is_not_pecm[Z];

~ int64 field 40;

~_int64 field 48;

“BYTE field 50[%];

signed int is_si_slice;

Figure: Example of reversed C++ class

\=
wa
-

Leonardo Galli How does Zoom Store Recordings? — Reverse Engineering Process October 8, 2020

32/ 48

zIt Virtual Functions Example

// [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

V20 = *((_QWORD *)this + H

v13 = *(unsigned __int8 k)(vZD + 1997);

w14 = *(_QWORD *)(**((_QWORD **)this + 4) + 64LL);
v2 = 0;

v3 = 0iL;

vd = OLL;

result = OLL;

do

vé = v13
if (bitt_l:t(ivs vz))

1{
if (a2)
v7 = byte 192EDO[v4];

v15 = byte_192E70([vd];
v8 = *((_QWORD *)this + 6);

| int64 _ fastcall ns_avc::zltCResidualCABACParser::sub 1334CA(ns_avcr:zltCResidualCABACParser *this, int a2)

result = (#(__int64 (_ fastcall #+)(_QWORD, __ int64, _ int64, _QWORD, _QWORD))(***((_QWORD ***)this + 5) + 112LL))(

*¥((_QWORD **)this + 5),
v8 +v3,

S1L,
{unsigned int)vd,
*((unsigned int -)l:hin + 4));

*(_BYTE *)(v20 + vl5) = *(_BYTE *)(v8 + v3 + 9);

v = *(_BYTE *)(vB + v3 + 3);

vl = vI4;

*(_BYTE *)(v1d + vT + 5) = v9;

*(CBYTE *)(v1d + w7 + 4) = vd;

+(CBYTE *)(v14 + v7 + 1) = v9;

else
i
v21 = byte_192E70(vd];

V16 = *((_QWORD *)this + 6);
v17 = byte_192ED0[vd];

(*ivoid (_fastcall *!)(QWORD, _int64, _intd, _int6d, _QWORD))(***((_QWORD *+*)this +5) + 112LL))(
* QWORD 57,

*+)this

v,
*({unsigned int *)this + 4));

Leonardo Galli How does Zoom Store Recordings?

Reverse Engineering Process

October 8, 2020

33 /48

DIY H.264 Decoder

» H.264 specification is very difficult to
understand
» ffmpeg's implementation has no
comments and does not follow the
specification closely
Debugging and changing ffmpeg
would be difficult (or so | thought)
> Idea: Let's build our own decoder
made for debugging!

i

Leonardo Galli How does Zoom Store Recordings? — Reverse Engineering Process October 8, 2020 34 /48

DIY H.264 Decoder

> Let'sbuild-eurown
decodermadefor-debuggingt

» Even just parsing H.264 is extremely
complicated

» Lots of intricacies and weird stuff going
on

3
\=
: Leonardo Galli How does Zoom Store Recordings? — Reverse Engineering Process October 8, 2020 35 /48

Back to zlt

» Took another look at the zlt framework
» Managed to reverse engineer quite a
lot of their code
At first, relied way too much on
static analysis
Using a debugger helped immensely
» Found some interesting things while
poking around

» Video is already stored in bad quality,
so that proved a bit pointless

%

- Leonardo Galli How does Zoom Store Recordings? — Reverse Engineering Process October 8, 2020 36 / 48

Findings

Leonardo Galli How does Zoom Store Recordings? — Findings October 8, 2020 37 /48

)

Leonardo Galli

Findings
Recording Files

How does Zoom Store Recordings? —

Findings

October 8, 2020

38 /48

Basic File Layout

> First, a file header containing information like the version and offset of actual data
» Data part of file is split into many small “packets”:
Delimited by 0x2C05F158 (header) and 0x84AD52E2 (trailer)
» Every packet has:
. specifies type of packet (e.g. video, audio)
int32_t prop_size : specifies size of property data

int32 t data_size : specifies size of actual data

0400 58 f1 05 2c 00 00 00 00 f2 69 e3 O1
0410 00 00 00 OO OO OO0 OO0 00 00 00 OO ©00 00 00 00 00
0420 00 00 OO0 00 OO 00 OO 0O 00 ©0O 00 OO 00 00 OO0 OO0
0430 00 00 00 00 e2 52 ad 84 58 f1 05 2c

0440 00 00 OO0 00 84 71 e3 01 00 OO0 00 OO <cO 00 OO0 OO0
0450 0Oa 00 OO 00 OO OO OO OO 00 OO0 00 OO0 80 02 00 00
0460 18 00 00 00 O OO0 O OO 00 OO0 00 OO0 00 7d 00 00
0470 02 04 00 01 OO OO0 O OO 00 OO 00 OO O00 00 OO0 00
0480 00 OO0 OO 00 O OO OO OO 00 OO0 00 OO 00 00 OO0 OO0
0490 00 00 OO0 00 OO 00 OO OO0 00 OO 00 OO 00 00 OO0 00

- Leonardo Galli How does Zoom Store Recordings? — Findings October 8, 2020 39 /48

File Purposes

» double click to convert Ol.zoom contains screenshare, webcam, avatar
and cursor sample packets

> double click to_convert 02.zoom contains all command packets

> double click to convert 03.zoom contains the audio sample packets

3
\=
3 Leonardo Galli How does Zoom Store Recordings? — Findings October 8, 2020 40 / 48

Types of Samples

» Audio, Screen Share and Webcam were already discussed

» Cursor stores a bmp of the current cursor alongside its screen position
» Avatar stores a bmp of the avatar of a person

Figure: Example of a cursor image.

aya

Leonardo Galli How does Zoom Store Recordings? — Findings October 8, 2020

41 / 48

In-Depth Format Description

A more in-depth format description as well as tools for extracting media are available on
my GitHub page.

ha
3 Leonardo Galli How does Zoom Store Recordings? — Findings October 8, 2020 42 / 48

)

Leonardo Galli

Findings
Other Interesting Bits

How does Zoom Store Recordings? — Findings

October 8, 2020

43 / 48

Software Architecture

» Organization extremely modular
Some parts of the modularization seem unnecessary
Most exported C++ classes have C wrappers for no discernable reason
P> zmb uses a pipeline architecture
Individual operations (e.g. reading a file, converting video) are nodes in a graph

Nodes communicate between each other
Does not seem to be used much, except for outputting audio tracks by person

October 8, 2020

aya

Leonardo Galli How does Zoom Store Recordings? — Findings

44 | 48

Transcoding Pipeline

convert_01.zoom convert__02.zoom convert_03.zoom
N - ~— |
Read Read Read Read
“ e T v
[zmb.source_mc.ﬁleJ {zmb.source_audio.file}
\
Video Audio For every person
[zmb.transcode_mc.video} (zmb.transcode.audio] (zmb.transcode.audio]
\
Video Audio Audio
~a A v
(zmb.muxer.mp4] [zmb_muxer.mp4]
\ \
Write Write

v
[Leonardo_GaIIi.m4aJ

Leonardo Galli How does Zoom Store Recordings? — Findings October 8, 2020 45 / 48

\=
Ta
-

Transcoding Engine

aya

> zIt seems to implement their own version of an H.264 encoder / decoder
» One small bug in the H.264 implementation:
write_bits(3, &flag) instead of write_bits(l, &flag) in one header
First hurdle trying to decode the H.264 stream using other programs

» There seems to be a boolean flag to enable / disable doing wildly
non-spec-compliant things
Makes reversing and reading the data a lot harder
Can force H.264 by selecting: “Optimize Screen Share for Video Clip”
» Fully functional hardware decoding support found in zlt
Likely not used due to aforementioned spec non-compliance

Leonardo Galli How does Zoom Store Recordings? — Findings October 8, 2020

46 / 48

Useful Links

» Go library and tool for working with these files: github.com

Tools

» Disassemblers: Cutter (cutter.re), Ghidra (ghidra-sre.org), IDA Freeware
(www.hex-rays.com)

» Binwalk (github.com)

Other

> flagbot homepage: flagbot.ch
> H.264 Specification (www.itu.int)

» angr for symbolic execution (angr.io)

aya

Leonardo Galli How does Zoom Store Recordings? — Findings October 8, 2020 47 / 48

https://github.com/galli-leo/gozoom
https://cutter.re
https://ghidra-sre.org
https://www.hex-rays.com/products/ida/support/download_freeware/
https://github.com/ReFirmLabs/binwalk
https://flagbot.ch
https://www.itu.int/rec/T-REC-H.264
http://angr.io

vy

Leonardo Galli

Questions?

How does Zoom Store Recordings?

Findings

October 8, 2020

48 / 48

	Introduction
	Reversing Tactics
	C++ Instance Methods and VTables

	Reverse Engineering Process
	Initial Reconnaissance
	Example: Reversing the File Header
	Further Investigation

	Findings
	Recording Files
	Other Interesting Bits

